您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初三数学实际问题与一元二次方程(龙晨辉)剖析
•制作人:龙晨辉一、增长(下降)率问题;二、面积问题;有一个人患了流感,经过两轮传染后有121人患了流感,每轮传染中平均一个人传染了几个人?分析:设每轮传染中平均一个人传染了x人开始有一人患了流感,第一轮:他传染了x人,第一轮后共有______人患了流感.第一轮的传染源第一轮后共有________人患了流感.第二轮的传染源第二轮:这些人中的每个人都又传染了x人,第二轮后共有____________________人患了流感.x+1x+11+x+x(x+1)=(x+1)2列方程得1+x+x(x+1)=121x=10;x=-12注意:1,此类问题是传播问题.2,计算结果要符合问题的实际意义.思考:如果按照这样的传播速度,三轮后有多少人患流感?nx1)(2003年我国政府工作报告指出:为解决农民负担过重问题,在近两年的税费政策改革中,我国政府采取了一系列政策措施,2001年中央财政用于支持这项改革试点的资金约为180亿元,预计到2003年将到达304.2亿元,求2001年到2003年中央财政每年投入支持这项改革资金的平均增长率?例解:这两年的平均增长率为x,依题有2304x11802.)((以下大家完成)1802x1180)(分析:设这两年的平均增长率为x,2001年2002年2003年180(1+x)类似地这种增长率的问题在实际生活普遍存在,有一定的模式若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是A,则它们的数量关系可表示为Ax1an)(其中增长取“+”,降低取“-”试一试1.某乡无公害蔬菜的产量在两年内从20吨增加到35吨.设这两年无公害蔬菜产量的年平均增长率为x,根据题意,列出方程为__________________.3.我市某企业为节约用水,自建污水净化站,7月份净化污水3000吨,9月份增加到3630吨,求这两个月净化污水量的平均每月增长的百分率。2.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为X,可列方程_____________.分析:显然乙种药品成本的年平均下降额较大,是否它的年平均下降率也较大?请大家计算看看.两年前生产一吨甲种药品的成本是5000元,生产一吨乙种药品的成本是6000元,随着生产技术的进步,现代生产一吨甲种药品的成本是3000元,生产一吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应该怎样全面地比较几个对象的变化状况?分析:甲种药品成本的年平均下降额________乙种药品成本的年平均下降额________显然,_______种药品成本的年平均下降额较大.但:年平均下降额(元)不等于年平均下降率(百分比)在长方形钢片上冲去一个长方形,制成一个四周宽相等的长方形框。已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2,求这个长方形框的框边宽。XX30cm解:设长方形框的边宽为xcm,依题意,得30×20–(30–2x)(20–2x)=400整理得x2–25x+100=0得x1=20,x2=5当x=20时,20-2x=-20(舍去);当x=5时,20-2x=10答:这个长方形框的框边宽为5cm探究2(面积问题)分析:本题关键是如何用x的代数式表示这个长方形框的面积有一张长方形桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?分析:这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7解法一:设正中央的矩形两边分别为9xcm,7xcm依题意得39x7x27214解得133x2233x()2舍去故上下边衬的宽度为:左右边衬的宽度为:变式:27要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度?27分析:这本书的长宽之比是9:7,正中央的矩形两边之比也为9:7,由此判断上下边衬与左右边衬的宽度之比也为9:7解法二:设上下边衬的宽为9xcm,左右边衬宽为7xcm依题意得212743)1421)(1827(xx解方程得4336x(以下同学们自己完成)如图,已知A、B、C、D为矩形的四个顶点,AB=16㎝,AD=6㎝,动点P、Q分别从点A、C同时出发,点P以3㎝/s的速度向点B移动,一直到点B为止,点Q以2㎝/s的速度向点D移动.问:P、Q两点从出发开始几秒时,四边形PBCQ的面积是33c㎡例APDQBC问(1)P、Q两点从出发开始几秒时,四边形PBCQ的面积是33c㎡APDQBC分析:四边形PBCQ的形状是梯形,上下底,高各是多少?•.如图,ΔABC中,∠B=90º,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.•(1)如果点P、Q分别从点A、B同时出发,经过几秒钟,ΔPBQ的面积等于8平方厘米?ABCQP•(2)如果点P、Q分别从点A、B同时出发,并且点P到点B后又继续在BC边上前进,点Q到点C后又继续在CA边上前进,经过几秒钟,ΔPCQ的面积等于12.6平方厘米?ABCQP•2.如图,在矩形ABCD中,AB=12cm,BC=6cm.点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6).那么当t为何值时,ΔQAP的面积等于8平方厘米?ABCDPQ
本文标题:初三数学实际问题与一元二次方程(龙晨辉)剖析
链接地址:https://www.777doc.com/doc-3425645 .html