您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 等差数列与等比数列的综合应用12012-12-12
始终带着一颗骄傲的心前进!第2讲等差数列的性质及应用(必修五)告诉我,我会忘记;做给我看,我会记住;让我自主参与,我会完全理解。————苏娜丹戴克(美国教育家)始终带着一颗骄傲的心前进!要点回顾等差数列常用性质已知数列是等差数列,是的前项和,为公差.}{nans}{nand),()()1(*Nmndmnaamn通项公式推广:),,,(,)2(*Nqpmnaaaaqpnmqpnm则若)(2}){3(*2Nndan也为等差数列,公差为.),(,,,*2的等差数列组成公差为推广:dNmkaaamkmkk.,}{p}){4(为常数)也为等差数列(则为等差数列,qpqbabnnn始终带着一颗骄傲的心前进!要点回顾等差数列各项和常用性质已知数列是等差数列,是的前项和,为公差.}{nans}{nand.21,}{)1(1dansn公差为也为等差数列,首项为)(,,)2(*232Nmsssssmmmmm成等差数列项与偶数项的性质关于非零等差数列奇数)3(.,21nnaassndssn偶奇奇偶,则若项数为.}{)4(1212nnnnnnTSbaTnb则,项和为为等差数列前若.1,,)1(,12nnssassnasansnnnn偶奇偶奇奇偶,则若项数为始终带着一颗骄傲的心前进!课前演练2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.111始终带着一颗骄傲的心前进!解析∵{an}为等差数列,∴a1+a5=2a3,得3a3=3,则a3=1,∴S5=5(a1+a5)2=5a3=5,故选A.答案A课前演练2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.111始终带着一颗骄傲的心前进!在等比数列{an}(n∈N*)中,a11,公比q0,设bn=2logna,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{bn}是等差数列;(2)求{bn}的前n项和Sn及{an}的通项an;(3)试比较an与Sn的大小.例1分析:(1)证明用“定义”.(2)先求{bn}的首项和公差,再求{an}.(1)证明:∵bn=log2an,∴bn+1-bn=log2an+1an=log2q为常数,∴数列{bn}为等差数列且公差d=log2q.(1)证明:∵bn=log2an,∴bn+1-bn=log2an+1an=log2q为常数,∴数列{bn}为等差数列且公差d=log2q.(1)证明:∵bn=log2an,∴bn+1-bn=log2an+1an=log2q为常数,∴数列{bn}为等差数列且公差d=log2q.始终带着一颗骄傲的心前进!(2)解:∵b1+b3+b5=6,∴b3=2,∵a11,∴b1=log2a10,∵b1b3b5=0,∴b5=0.∴b1+2d=2,b1+4d=0,解得b1=4,d=-1,∴Sn=4n+nn-12×(-1)=9n-n22.∵log2q=-1,log2a1=4,∴q=12,a1=16,∴an=25-n(n∈N*).(2)解:∵b1+b3+b5=6,∴b3=2,∵a11,∴b1=log2a10,∵b1b3b5=0,∴b5=0.∴b1+2d=2,b1+4d=0,解得b1=4,d=-1,∴Sn=4n+nn-12×(-1)=9n-n22.∵log2q=-1,log2a1=4,∴q=12,a1=16,∴an=25-n(n∈N*).(2)解:∵b1+b3+b5=6,∴b3=2,∵a11,∴b1=log2a10,∵b1b3b5=0,∴b5=0.∴b1+2d=2,b1+4d=0,解得b1=4,d=-1,∴Sn=4n+nn-12×(-1)=9n-n22.∵log2q=-1,log2a1=4,∴q=12,a1=16,∴an=25-n(n∈N*).(2)解:∵b1+b3+b5=6,∴b3=2,∵a11,∴b1=log2a10,∵b1b3b5=0,∴b5=0.∴b1+2d=2,b1+4d=0,解得b1=4,d=-1,∴Sn=4n+nn-12×(-1)=9n-n22.∵log2q=-1,log2a1=4,∴q=12,a1=16,∴an=25-n(n∈N*).(2)解:∵b1+b3+b5=6,∴b3=2,∵a11,∴b1=log2a10,∵b1b3b5=0,∴b5=0.∴b1+2d=2,b1+4d=0,解得b1=4,d=-1,∴Sn=4n+nn-12×(-1)=9n-n22.∵log2q=-1,log2a1=4,∴q=12,a1=16,∴an=25-n(n∈N*).(2)解:∵b1+b3+b5=6,∴b3=2,∵a11,∴b1=log2a10,∵b1b3b5=0,∴b5=0.∴b1+2d=2,b1+4d=0,解得b1=4,d=-1,∴Sn=4n+nn-12×(-1)=9n-n22.∵log2q=-1,log2a1=4,∴q=12,a1=16,∴an=25-n(n∈N*).(2)解:∵b1+b3+b5=6,∴b3=2,∵a11,∴b1=log2a10,∵b1b3b5=0,∴b5=0.∴b1+2d=2,b1+4d=0,解得b1=4,d=-1,∴Sn=4n+nn-12×(-1)=9n-n22.∵log2q=-1,log2a1=4,∴q=12,a1=16,∴an=25-n(n∈N*).始终带着一颗骄傲的心前进!(3)显然an=25-n0,当n≥9时,Sn=n9-n2≤0,∴n≥9时,anSn.∵a1=16,a2=8,a3=4,a4=2,a5=1,a6=12,a7=14,a8=18,S1=4,S2=7,S3=9,S4=10,S5=10,S6=9,S7=7,S8=4,∴当n=3,4,5,6,7,8时,anSn;当n=1,2或n≥9时,anSn.(3)显然an=25-n0,当n≥9时,Sn=n9-n2≤0,∴n≥9时,anSn.∵a1=16,a2=8,a3=4,a4=2,a5=1,a6=12,a7=14,a8=18,S1=4,S2=7,S3=9,S4=10,S5=10,S6=9,S7=7,S8=4,∴当n=3,4,5,6,7,8时,anSn;当n=1,2或n≥9时,anSn.(3)显然an=25-n0,当n≥9时,Sn=n9-n2≤0,∴n≥9时,anSn.∵a1=16,a2=8,a3=4,a4=2,a5=1,a6=12,a7=14,a8=18,S1=4,S2=7,S3=9,S4=10,S5=10,S6=9,S7=7,S8=4,∴当n=3,4,5,6,7,8时,anSn;当n=1,2或n≥9时,anSn.(3)显然an=25-n0,当n≥9时,Sn=n9-n2≤0,∴n≥9时,anSn.∵a1=16,a2=8,a3=4,a4=2,a5=1,a6=12,a7=14,a8=18,S1=4,S2=7,S3=9,S4=10,S5=10,S6=9,S7=7,S8=4,∴当n=3,4,5,6,7,8时,anSn;当n=1,2或n≥9时,anSn.(3)显然an=25-n0,当n≥9时,Sn=n9-n2≤0,∴n≥9时,anSn.∵a1=16,a2=8,a3=4,a4=2,a5=1,a6=12,a7=14,a8=18,S1=4,S2=7,S3=9,S4=10,S5=10,S6=9,S7=7,S8=4,∴当n=3,4,5,6,7,8时,anSn;当n=1,2或n≥9时,anSn.(3)显然an=25-n0,当n≥9时,Sn=n9-n2≤0,∴n≥9时,anSn.∵a1=16,a2=8,a3=4,a4=2,a5=1,a6=12,a7=14,a8=18,S1=4,S2=7,S3=9,S4=10,S5=10,S6=9,S7=7,S8=4,∴当n=3,4,5,6,7,8时,anSn;当n=1,2或n≥9时,anSn.(3)显然an=25-n0,当n≥9时,Sn=n9-n2≤0,∴n≥9时,anSn.∵a1=16,a2=8,a3=4,a4=2,a5=1,a6=12,a7=14,a8=18,S1=4,S2=7,S3=9,S4=10,S5=10,S6=9,S7=7,S8=4,∴当n=3,4,5,6,7,8时,anSn;当n=1,2或n≥9时,anSn.(3)显然an=25-n0,当n≥9时,Sn=n9-n2≤0,∴n≥9时,anSn.∵a1=16,a2=8,a3=4,a4=2,a5=1,a6=12,a7=14,a8=18,S1=4,S2=7,S3=9,S4=10,S5=10,S6=9,S7=7,S8=4,∴当n=3,4,5,6,7,8时,anSn;当n=1,2或n≥9时,anSn.始终带着一颗骄傲的心前进!29如图:8始终带着一颗骄傲的心前进!(1)正项等差数列为等比数列;}{lognaa}{na点评:(1)证明用“定义”;(2)巧用性质简化计算;推广:}{na(2)等差数列为等比数列.}{nab始终带着一颗骄傲的心前进!已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).(1)设bn=an+1-an(n∈N*),证明:{bn}是等比数列;(2)求数列{an}的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.例2分析:(1)证明用“定义”.)(1非零常数qaann(2)利用为等比数列,用累加求和求通项}{1nnaa始终带着一颗骄傲的心前进!已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).(1)设bn=an+1-an(n∈N*),证明:{bn}是等比数列;(2)求数列{an}的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.(1)证明:由题设an+1=(1+q)an-qan-1(n≥2),得an+1-an=q(an-an-1),即bn=qbn-1,n≥2.由b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列.(1)证明:由题设an+1=(1+q)an-qan-1(n≥2),得an+1-an=q(an-an-1),即bn=qbn-1,n≥2.由b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列.(1)证明:由题设an+1=(1+q)an-qan-1(n≥2),得an+1-an=q(an-an-1),即bn=qbn-1,n≥2.由b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列.(1)证明:由题设an+1=(1+q)an-qan-1(n≥2),得an+1-an=q(an-an-1),即bn=qbn-1,n≥2.由b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列.(1)证明:由题设an+1=(1+q)an-qan-1(n≥2),得an+1-an=q(an-an-1),即bn=qbn-1,n≥2.由b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列.例2始终带着一颗骄傲的心前进!已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).(1)设bn=an+1-an(n∈N*),证明:{bn}是等比数列;(2)求数列{an}的通项公式;例2注意对公比进行q讨论(2)解:由(1),a2-a1=1,a3-a2=q,…an-
本文标题:等差数列与等比数列的综合应用12012-12-12
链接地址:https://www.777doc.com/doc-3451157 .html