您好,欢迎访问三七文档
§0-5二阶微分算符格林定理Second-orderDifferenceOperator,Green’sTheorem1、一阶微分运算(First-orderDifferenceCalculation)将算符直接作用于标量场和矢量场,即分别得到梯度、散度和旋度,即这些都叫一阶微分运算。举例:a)设为源点与场之间的距离,r的方向规定为源点指向场点,试分别对场点和源点求r的梯度。AA,,222)()()(zzyyxxrxx第一步:源点固定,r是场点的函数,对场点求梯度用r表示,则有而场点(观察点)源点坐标原点oxxrzreyrexrerzyxrxxxxzzyyxxxr)()(2)()()(2121222同理可得:故得到:)(,)(rzzzrryyyrrrrzzeyyexxerrzzeryyerxxezreyrexrerzyxzyxzyxˆ)()()(1)()()(第二步:场点固定,r是源点的函数,对源点求梯度用表示。而同理可得:rzreyrexrerzyxrxxxxzzyyxxxr)()1()(2)()()(2121222rzzzrryyyr)(,)(所以得到:作业:b)设u是空间坐标x,y,z的函数,证明rrrrrzzeryyerxxezreyrexrerzyxzyxˆ)()()(ududfuf)(?13rrr和求证:这是求复合函数的导数(梯度),按复合函数微分法则,有证毕)()()()()()()()()()(uduudfzueyuexueduudfzuduudfeyuduudfexuduudfezufeyufexufeufzyxzyxzyxc)设求解:而同理可得xxzzeyyexxerzyx)()()(rr和zryrxrrererezeyexerzyxzzyyxxzyx)()(1)(xxxxrx故有.1zryrzy那么这里同理可得故有.3111zryrxrrzyxzryrxrrzyx1)(xxxxrx.1zryrzy.3111zryrxrrzyx由此可见:d)设u是空间坐标x,y,z的函数,证明证:rrduAduuA)(.)()()()()()()()()(证毕duuAduuduuAdzuduudAyuduudAxuduudAzuAyuAxuAuAzyxzyxe)设u是空间坐标x,y,z的函数,证明证:duuAduuA)()(xuduudAzuduudAezuduudAyuduudAeyuAxuAexuAzuAezuAyuAeuAzxyyzxxyzzxyyzx)()()()()()()()()()()(2、二阶微分运算(CalculationofTwo-orderDifference)将算符作用于梯度、散度和旋度,则称为二阶微分运算,设为标量场,为矢量场。.)()()()()()(证毕duuAduduudAduudAduudAzuyuxueeeyuduudAxuduudAezyxzyxxyz)(x,)(xg)(xf并假设的分量具有所需要的阶的连续微商,则不难得到:(1)标量场的梯度必为无旋场(2)矢量场的旋度必为无散场(3)无旋场可表示一个标量场的梯度(4)无散场可表示一个矢量场的旋度fg,和0)(0)(ggg则若,0fgg则若,0(5)标量场的梯度的散度为(6)矢量场的旋度的旋度为3、运算于乘积(CalculationofMultiplicationwith)(1))()()()(2222222zyxzzyyxxggg2)()(0)(0)(222222xyyxezxxzeyzzyezyxzyxeeezyxzyx(2)0)(g0)(222222yzgxzgxzgzygzxgyxgygxgzxgzgyzgygxgggzyxeeezeyexegxyzxyzxyzxyzzyxzyxzyx(3))()()()()()()()()()(zeyexezeyexezzeyyexxezeyexezyxzyxzyxzyx(4)(5)ggg)(ggggggggggg)()()()()(ggg)(ggggggggggg)()()()()((6)根据常矢运算法则则有:)()()(fggffg)()()()()(fgfgfgfgfgfg)()()(bacacbcba)()()()()()()(fgfggffggfgffgfffgg故有:(7)根据常矢运算法则:则有fgfggfgffg)()()()()()()()(fggffg)()()()()(fgfgfgfgfgfgcbabcacba)()()(fggfgffgfggfgffgfggffgffggfg)()()()()()()()()()()((8)因为故有从而得到:fgfggfgffg)()()()()(fgfgfgfggfgfgfgffffggg)()()()()()()()()())(()()(gfgffggfgffgfgfggfgffgfggfgfgffg)()()()()()()()()(4、格林定理(Green’stheorem)由Gauss’stheorem得到:将上式交换位置,得到以上两式相减,得到svvdvdvsd)()(2与svdvsdI)()(2定理svdvsdII)()()(22定理5、常用几个公式设试求:a)而)()()(zzeyyexxexxrzyxrzeryerxerrzyx1111132322221222)()(2)()()(21)()()(1rxxxxzzyyxxzzyyxxxrx同理:b)2333333ˆ)()()(1)(1,)(1rrrrrzzeryyerxxerrzzrzryyryzyx)(4111223xxrrrrr而3rr从而可见:c).41,,0.01,,022rxxrrxxr故此时即表示时当的值故此时即表示时当)0()0(403rrrr0)1()1(33rrrrrrd)0)()()()()()(yxxxyyexzzzxxezyyyzzeyrxrezyxxyxxrzrezryrerrrzyxeeerzxxyzxzyxzyxre).)(为常矢araaeaeaeazzeyyexxezazzeyyexxeyazzeyyexxexazrayraxrarzayaxarazzyyxxzyxzzyxyzyxxzyxzyx)()()()()()()()()()(f).)(为常矢arazreayreaxrearzeyexearzeyexearzeyexearararararararazzzyyyxxxzzyxzyzyxyxzyxxzzyyxxzzyyxx)()()()()(g)aeaeaeazzzeayyyeaxxxeazzyyxxzzyyxx)()()(为常矢kErkE,)sin(00)cos()cos()()cos()sin()(sin)()sin(000000rkEkkrkErkrkErkErkErkEh))
本文标题:旋度 散度 梯度
链接地址:https://www.777doc.com/doc-3465026 .html