您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 理论文章 > 初中数学典型例题100道
1初中数学典型例题100道(二)选择填空题150道一.选择题:7,如图,直线,点A1坐标为(1,0),过点A1作x的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2x的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(,).8,在Rt△ABC中,∠C=90°,∠A=30°,BC=2.若将此直角三角形的一条直角边BC或AC与x轴重合,使点A或点B刚好在反比例函数(x>0)的图象上时,设△ABC在第一象限部分的面积分别记做S1、S2(如图1、图2所示)D是斜边与y轴的交点,通过计算比较S1、S2的大小.9,若不论k为何值,直线y=k(x﹣1)﹣与抛物线y=ax2+bx+c有且只有一个公共点,求a、b、c的值。10,如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x≥3.5;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.上述4个判断中,正确的是()2A.①②B.①④C.①③④D.②③④二,解答题4,如图,在平面直角坐标系中,将直线y=kx沿y轴向下平移3个单位长度后恰好经过B(﹣3,0)及y轴上的C点.若抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的右侧),且经过点C,其对称轴与直线BC交于点E,与x轴交于点F.(1)求直线BC及抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,若∠APD=∠ACB,求点P的坐标;(3)在抛物线上是否存在点M,使得直线CM把四边形EFOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.5,如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.36,平面直角坐标系中,抛物线y=ax2+bx+c交x轴于点A、B(点A在点B左侧),与y轴交于点C,点A、C的坐标分别为(﹣3,0),(0,3),对称轴直线x=﹣1交x轴于点E,点D为顶点.(1)求抛物线的解析式;(2)点P是直线AC下方的抛物线上一点,且S△PAC=2S△DAC,求点P的坐标;(3)点M是第一象限内抛物线上一点,且∠MAC=∠ADE,求点M的坐标.
本文标题:初中数学典型例题100道
链接地址:https://www.777doc.com/doc-3471100 .html