您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 2014届高三一轮数学(理)复习第34讲数列求和
第34讲数列求和1.(改编)已知数列{an}是公比为2的等比数列,若a1=2,则1a21+1a22+…+1a2n=()A.13(1-12n)B.13(4n-1)C.13(1-14n)D.1-14nC解析:由条件知{1a2n}是首项为14,公比为14的等比数列,所以1a21+1a22+…+1a2n=141-14n1-14=13(1-14n),故选C.2.数列{an}的前n项和为Sn,已知Sn=1-2+3-4+…+(-1)n-1·n,则S15=()A.9B.8C.16D.15B解析:S15=1-2+3-4+…+15=1+(-2+3)+(-4+5)+…+(-14+15)=8,故选B.3.数列112,314,518,7116,…的前n项和Sn=.解析:Sn=(1+3+5+…+2n-1)+(12+14+…+12n)=n2+1-12n.4.数列{an}满足a1=1,an=2nn+1,其前n项和为Sn,则Sn=()A.n2n+1B.2nn+1C.n+2n+1D.2n2n+1B解析:an=2nn+1=2(1n-1n+1),则Sn=a1+a2+a3+…+an=2[(11-12)+(12-13)+…+(1n-1n+1)]=2(1-1n+1)=2nn+1.故选B.5.数列1×12,2×14,3×18,4×116,…的前n项和为.解析:S=1×12+2×14+3×18+…+n×12n,2S=1+2×12+3×14+…+(n-1)×12n-2+n×12n-1,两式相减得S=1+12+14+…+12n-1-n×12n=1-12n1-12-n×12n=2-2+n2n.6.求值:Sn=C1n+2C2n+3C3n+…+nCnn.解析:Sn=C1n+2C2n+3C3n+…+(n-1)Cn-1n+nCnn,①Sn=nCnn+(n-1)Cn-1n+(n-2)Cn-2n+…+2C2n+C1n=nC0n+(n-1)C1n+(n-2)C2n+…+2Cn-2n+Cn-1n,②①+②得2Sn=nC0n+nC1n+…+nCnn=n(C0n+C1n+…+Cnn)=n·2n,所以Sn=n·2n-1.一分组求和及并项求和【例1】求和:(1)Sn=1+(3+4)+(5+6+7)+(7+8+9+10)+…+(2n-1+2n+…+3n-2);(2)Sn=12-22+32-42+…+(-1)n-1·n2.解析:(1)因为an=(2n-1)+2n+(2n+1)+…+(3n-2)=n2n-1+3n-22=52n2-32n,所以Sn=52(12+22+32+…+n2)-32(1+2+…+n)=16n(n+1)(5n-2)(n∈N*).(2)当n是偶数时,Sn=(12-22)+(32-42)+…+[(n-1)2-n2]=-3-7-…-(2n-1)=-nn+12.当n是奇数时,Sn=1+(32-22)+(52-42)+…+[n2-(n-1)2]=1+5+9+…+(2n-1)=nn+12.故Sn=(-1)n-1nn+12(n∈N*).【拓展演练1】(1)求值:(a-1)+(a2-2)+…+(an-n);(2)(2012·湖南省郴州第三次模拟)若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=()A.15B.12C.-12D.-15解析:(1)因为Sn=(a-1)+(a2-2)+…+(an-n)=(a+a2+…+an)-(1+2+…+n).当a=1时,Sn=n-nn+12=-n2+n2.当a≠1时,Sn=a1-an1-a-nn+12.所以Sn=-n2+n2a=1a1-an1-a-nn+12a≠1.(2)因为an=(-1)n(3n-2),所以a1+a2+…+a10=(-1+4)+(-7+10)+…+(-25+28)=15.故选A.二裂项相消法求和【例2】(2012·黑龙江绥棱期末)函数f(x)=x3,在等差数列{an}中,a3=7,a1+a2+a3=12,记Sn=f(3an+1),令bn=anSn,数列{1bn}的前n项和为Tn.(1)求{an}的通项公式和Sn;(2)求证:Tn13.解析:(1)设数列{an}的公差为d.由a3=a1+2d=7,a1+a2+a3=3a1+3d=12,解得a1=1,d=3,所以an=3n-2.因为f(x)=x3,所以Sn=f(3an+1)=an+1=3n+1.(2)证明:因为bn=anSn=(3n-2)(3n+1),所以1bn=13n-23n+1=13(13n-2-13n+1),Tn=1b1+1b2+…+1bn=13[(1-14)+(14-17)+…+(13n-2-13n+1)]=13(1-13n+1)13.【拓展演练2】(2012·北京市东城区第一学期期末)在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=S2b2.(1)求an与bn;(2)证明:13≤1S1+1S2+…+1Sn23.解析:(1)设数列{an}的公差为d,则由b2+S2=12q=S2b2,得q+6+d=12q=6+dq,解得q=3或q=-4(舍去),d=3,故an=3+3(n-1)=3n,bn=3n-1.(2)因为Sn=n3+3n2,所以1Sn=2n3+3n=23(1n-1n+1),故1S1+1S2+…+1Sn=23[(1-12)+(12-13)+(13-14)+…+(1n-1n+1)]=23(1-1n+1).因为n≥1,所以01n+1≤12,于是12≤1-1n+11,所以13≤23(1-1n+1)23,即13≤1S1+1S2+…+1Sn23.【例3】(2012·广东韶关市第一次调研)已知函数f(x)=log2x,且数列{f(an)}是首项为2,公差为2的等差数列.(1)求证:数列{an}是等比数列;(2)设bn=an·f(an),求数列{bn}的前n项和Sn的最小值.三错位相减法求和解析:(1)证明:由题意f(an)=2+(n-1)×2=2n,即log2an=2n.所以an=(2)2n=2n,所以an+1an=2n+12n=2.所以数列{an}是以2为首项,2为公比的等比数列.(2)由(1)知,bn=an·f(an)=n·2n+1.所以Sn=1·22+2·23+3·24+…+n·2n+1,①2Sn=1·23+2·24+…+3·25+…+n·2n+2.②②-①,得Sn=-22-23-24-…-2n+1+n·2n+2=-221-2n1-2+n·2n+2.所以Sn=(n-1)2n+2+4.因为{Sn}是递增数列,所以Sn的最小值等于S1=4.【拓展演练3】(2012·江西省十所重点中学第二次联考)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.(1)求数列{an}的通项公式;(2)设bnan是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn.解析:(1)依题意得3a1+3×22d+5a1+4×52d=50a1+3d2=a1a1+12d),解得a1=3d=2),所以an=a1+(n-1)d=3+2(n-1)=2n+1,即an=2n+1.(2)bnan=3n-1,bn=an·3n-1=(2n+1)·3n-1,Tn=3+5·3+7·32+…+(2n+1)·3n-1,3Tn=3·3+5·32+7·33+…+(2n-1)·3n-1+(2n+1)·3n.-2Tn=3+2·3+2·32+…+2·3n-1-(2n+1)·3n=3+2·31-3n-11-3-(2n+1)3n=-2n·3n,所以Tn=n·3n.1.(2012·全国卷)已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列{1anan+1}的前100项和为()A.100101B.99101C.99100D.101100A解析:由a5=5,S5=15,可得a1+4d=55a1+5×42d=15,解得a1=1d=1,所以an=n.所以1anan+1=1nn+1=1n-1n+1,S100=(1-12)+(12-13)+…+(1100-1101)=1-1101=100101.2.(2011·北京卷)在等比数列{an}中,a1=12,a4=-4,则公比q=-2;a1+a2+…+an=.解析:q3=a4a1=-8,所以q=-2;由a1=12,q=-2,得到等比数列的前n项和Sn=a1+a2+…+an=12[1--2n]1--2=1--2n6.3.(2012·新课标全国卷)数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为.解析:由an+1+(-1)nan=2n-1,得an+2=(-1)nan+1+2n+1=(-1)n[(-1)n-1an+2n-1]+2n+1=-an+(-1)n(2n-1)+2n+1,即an+2+an=(-1)n(2n-1)+2n+1,也有an+3+an+1=-(-1)n(2n+1)+2n+3,两式相加得an+an+1+an+2+an+3=-2(-1)n+4n+4,设k为整数,则a4k+1+a4k+2+a4k+3+a4k+4=-2(-1)4k+1+4(4k+1)+4=16k+10,于是S60=k=014(a4k+1+a4k+2+a4k+3+a4k+4)=k=014(16k+10)=1830.4.(2012·江西卷)已知数列{an}的前n项和Sn=-12n2+kn(其中k∈N*),且Sn的最大值为8.(1)确定常数k,并求an;(2)求数列{9-2an2n}的前n项和Tn.解析:(1)当n=k∈N*时,Sn=-12n2+kn取最大值,即8=Sk=-12k2+k2=12k2,故k2=16,因此k=4,从而an=Sn-Sn-1=92-n(n≥2),又a1=S1=72,所以an=92-n.(2)因为bn=9-2an2n=n2n-1,Tn=b1+b2+…+bn=1+22+322+…+n-12n-2+n2n-1,所以Tn=2Tn-Tn=2+1+12+…+12n-2-n2n-1=4-12n-2-n2n-1=4-n+22n-1.
本文标题:2014届高三一轮数学(理)复习第34讲数列求和
链接地址:https://www.777doc.com/doc-3491029 .html