您好,欢迎访问三七文档
波束形成算法及其新进展2007/5/31通信与信息工程学院目录§0.引言§1.阵列天线的统计模型和DOA估计§2.常用的波束形成算法§3.自适应波束形成算法及其改进§4.其他波束形成算法§5.总结波束形成应用于:雷达声纳电子或通信干扰侦察移动通信医学领域等引言波束形成是阵列信号处理、智能天线系统中一重要技术使用阵列天线的优点:-提高系统的容量-提高系统的性能-抑制干扰和噪声-节省功率信源为远场、窄带信号。信源个数d小于阵源数m,dm。信源为平稳、各态历经、零均值复随机过程。各通道噪声为加性噪声,彼此独立,也独立于信号。噪声为平稳高斯过程,均值为零。1.1、阵列信号数学模型假设阵元i接收到第n个信源的输出:milktnijktStXtnlijtStXidnnniinnin,...,2,12)(}cos)1(exp{)()()(}cos)1(2exp{)()(1,其中:d:为信源数数学表达)()()()()()()(......)()(..............................)(......)()()(......)()()()()()(212121222121211121tntntntStStStXtXtXtYmddmmmddm)()()()((1))()()()(]cos)1(exp[)(21dnniAtntSAtYijk*)阵列流型(的方向向量阵列对信源manifoldAi)(i)()(仅取决于固定阵1.2、DOA估计(DirectionOfArrival)波达方向MUSIC算法MultipleSignalClassification.特征向量特征值进行特征分解为正定、哈米特矩阵,满秩矩阵(独立信源)—取协方差矩阵)(212112mmHmiHiiiHSHSHeeeEdiagEEeeRRSSERIAARYYERnASY按大小顺序排列,,则有个独立信源,则mdddmddNdSmddNdSNSNSSeeeEeeeEdiagdiagEEEdRRankd21212121212100][1)]()([)(MUSIC0)()]([][][][)]([][][][HNNHMUSICHNNNSSNSEEPEASpanESpanESpanESpanASpanESpanESpanESpan空间谱估计式:利用正交关系,构造由哈米特特性知:空间。:信号子空间、噪声子和*11)()()()(120HNNHMUSICNLKHKKEEPASpanESpanYYLR实际:一维搜索:DOAs=[102560];snr=20;图2-1第二节常用的波束形成算法2.1波束形成的最佳权向量通过调整加权系数完成的,阵列的是对各阵元的接收信号向量x(n)在各阵元上分量的加权和。则输出可写作MmmmHnxwnxwny1*)()()(图2-1wRwtyEHwwˆmin)(min21)(dHaw这个问题很容易用Lagrange乘子法求解。波束形成器的最佳权向量为)(1doptaRw该方法为LCMV此方法涉及到矩阵求逆,又称为SMI约束条件:2.2Bartlett波束形成算法Bartlett波束形成算法是使得波束形成的输出功率相对于某个输入信号最大。}])()({[maxargwnxnxwEHHw)()()(aaawHba2.3波束形成的准则·最大信号噪声比准则(MSNR)使期望信号分量功率与噪声分量功率之比为最大。但是必须知道噪声的统计量和期望信号的波达方向。·最大信干噪比准则(MSINR)使期望信号分量功率与干扰分量功率及噪声分量功率之和的比为最大。·最小均方误差准则(MMSE)在非雷达应用中,阵列协方差矩阵中通常都含有期望信号,基于此种情况提出的准则。使阵列输出与某期望响应的均方误差为最小,这种准则不需要知道期望信号的波达方向。·最大似然比准则(MLH)在对有用信号完全先验无知的情况,这时参考信号无法设置,因此,在干扰噪声背景下,首先要取得对有用信号的最大似然估计。·线性约束最小方差准则(LCMV)对有用信号形式和来向完全已知,在某种约束条件下使阵列输出的方差最小。表1三种统计最佳波束形成方法的性能比较仿真一:LCMV波束形成方法在不同信噪比情况下的比较仿真中阵列中的天线数为16,阵列之间间距为半波长,信道为AWGN,在快拍数为200,SNR分别取-15,5和15的情况下,我们用计算机分别仿真出LCMV方法在不同SNR情况下得到的波束形成方向图。DOA分别取5o,20o,30o,40o,50o和60o。010203040506070809000.10.20.30.40.50.60.70.80.91DOACompareatDifferentSNR(DOA=20)SNR=-15SNR=5SNR=15图3-2DOA=20o的波束形成方向图2.4仿真由图3-2可以看出随着信噪比的提高波束形成的效果下降。这是因为接收信号的协方差矩阵R中对应的小特征值的扰动引起的。仿真2:LCMV波束形成方法在不同快拍数情况下的比较仿真中阵列中的天线数为16,阵列之间间距为半波长,信道为AWGN,在SNR为-15,快拍数分别为2000,200和20的情况下,我们用计算机分别仿真出LCMV方法在不同快拍数情况下得到的波束形成方向图。DOA分别取5o,20o,30o,40o,50o和60o。010203040506070809000.10.20.30.40.50.60.70.80.91DOACompareatDifferentSample(DOA=20)n=2000n=200n=20图3-3DOA=20o的波束形成方向图由图3-3可以看出随着快拍数的减小波束形成的效果下降。第三节自适应波束形成算法及其改进3.1常用自适应波束形成算法LMS最小均方RLS自适应波束形成算法的比较仿真中阵列中的天线数为16,阵列之间间距为半波长,信道为AWGN,在SNR为30时,样本数为320的情况下,我们用计算机分别仿真出LMS方法和RLS方法的两种自适应波束形成方向图。DOA分别取5o,20o,30o,40o,50o和60o。期望的DOA为30o。050100150200250300350-160-140-120-100-80-60-40-20020IterationMSE/dBLearningCurveLMSRLS图3-1LMS和RLS的自适应波束形成方法的学习曲线由图3-1可以看出RLS方法只需迭代十几次就收敛到满意的值,而LMS方法需要经过一百多次迭代才收敛。最小均方(LMS)自适应波束形成算法是一种较简单、实用的自适应波束形成算法。LMS的优点是结构简单,算法复杂度低,易于实现,稳定性高;缺点主要是收敛速度较慢,因而其应用也受到一定的限制。分析表明,影响LMS自适应波束形成器收敛速度的主要因素是输入信号的最大、最小特征值之比,该值越小收敛就越快。为了提高收敛速度,人们把频域滤波的方法加以推广得到变换域的自适应滤波方法。3.2变换域自适应波束形成算法频域LMS自适应波束形成降维的频域自适应波束形成小波域自适应波束形成小波包变换自适应波束形成3.2.1阵列接收信号分析两个相邻阵元接收到的信号不同之处在于相位差,空域采样间隔,这决定了信号空域频率。sin2sindkd从公式可以看出空域采样间隔与波达方向(DOA)有关。不同DOA情况空域频率当DOA较小时,空域采样间隔较小,空域采样率较高,空域频率高,见图(a)。而DOA很大时候,可以认为空域采样间隔较大,空间采样率较低,空域频率较低,见图(b)。所以在固定的阵列间距的情况下不同DOA对应于不同空域频率。假设接收到信号的DOA不同,其空域频率也不同,DOA从[0,π/2]增加,其空域频率下降,所以,我们认为阵列接收到的信号是多种空域频率信号的叠加,如果对接收到的信号进行FFT变换(或其他变换),得到其空域频谱,即不同DOA对应的空域频率就会显示出来。根据前面,空域频率为:sindfspatial根据上式,我们知道空域频率是与波长、DOA、阵列间距等有关,与信源无关。阵列接收到的信号是各DOA对应的空域频率信号的叠加,则对接收信号进行FFT,在空域频谱只存在着各DOA对应的空间频率的谱峰。所以FFT变换后的信号为稀疏矩阵,在非DOA对应的空间频率上其值很小或为0,相关性下降。这是基于频域LMS的自适应波束形成算法的依据。基于频域LMS的自适应算法结构见图3.2所示,该算法先对输入信号进行FFT变换,再通过LMS算法实现了在频域上进行波束形成。根据前面分析知道:通过对阵列天线接收到的信号x(n)进行FFT,经过FFT后的r(n),自相关性下降,呈带状分布,这样LMS算法收敛速度就很快。当存在相干信源,假设它们DOA不同,相干信源在时域相干,但在频域是不相干的,所以基于频域LMS的自适应波束形成算法对相干信源具有鲁棒性。LMSx(n)r(n)FFTY(n)图3.2基于频域LMS的自适应算法的结构3.2.2基于频域LMS的自适应算法的结构基于频域LMS的自适应波束形成算法(FLMS-ABF)如下:1)对输入信号进行FFT,用矩阵表示为(3.3)其中:W为频域变换矩阵,酉矩阵,表示为:(3.4)对阵列接收信号进行N点FFT中,N为阵列中天线数,如果天线数是不为2的整数次幂,则采用补零的办法。2)LMS算法(3.5)其中:V为LMS算法中权向量。(3.6)其中:d为训练序列(3.7)其中:为学习步长。3)增加样本,循环(3.5)—(3.7),权向量V更新。)()(nWxnr1,0,)2exp(1NvuWNuvjNWTNN)()()(nrnVnyT)()()(nyndne)()(2)()1(*nrnaenVnV算法性能分析从变换域的角度来分析频域LMS的自适应波束形成的最佳解形式、收敛速度和计算复杂度等性能。基于频域LMS的自适应波束形成算法与最小均方(LMS)自适应波束形成算法相比,增加FFT的额外的计算量。但频域变换都有快速算法,计算量不大。设阵列中传感器数量M,LMS算法每迭代一次的复数加法次数2M,复数乘法的次数约为2M+1。FFT中复数加法次数M*log2M,复数乘法复杂度为M/2*log2M。当M=32,FFT只相当于数次LMS迭代。而且FFT已经有现成硬件,实现容易。经FFT变换后信号自相关性下降,之后的LMS算法收敛速度大大提高。总体而言,基于频域LMS的自适应波束形成算法的计算量与LMS自适应波束形成算法相比,增加的计算量较小仿真中采用32天线的均匀线形阵列,阵列间距为λ/2。假设有6个信源,它们的DOA为5o、15o、25o、35o、65o、80o。信道为AWGN。为了与其它算法比较性能,采用相同初值和步长。仿真实验1:研究基于频域LMS的自适应波束形成算法(FLMS-ABF)和LMS自适应波束形成算法(LMS-ABF)性能对比。从图3.4可以看出,FLMS-ABF比LMS-ABF收敛速度要快,而且FLMS-ABF能收敛到很小的数值,所以具有较好的性能。图3.3无噪声时不同算法性能比较图3.4SNR=20时不同算法性能比较实验2:研究基于频域LMS的自适应波束形成算法(FLMS-ABF)和LMS自适应波束形成算法(LMS-ABF)波
本文标题:智能天线算法
链接地址:https://www.777doc.com/doc-3536014 .html