您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 初高中数学衔接教材参考答案
校本课程教材初高中衔接250初高中数学衔接教材参考答案第一讲数与式的运算例1.解:原式=22]31)2([xx913223822)2(312312)2(2)31()2()(234222222xxxxxxxxxx例2.解:原式=333322)(])()()][([bababbaaba例3.解:(1)原式=333644mm(2)原式=3333811251)21()51(nmnm(3)原式=644)()44)(4(63322242aaaaa(4)原式=2222222)])([()()(yxyxyxyxyxyx63362332)(yyxxyx例4.解:0132xx0x31xx原式=18)33(3]3)1)[(1()11)(1(2222xxxxxxxx例5.解:bacacbcbacba,,,0原式=abbacaccabbccbaabccbaabccacbbbcaa333)()()(①abccabccabbababa3)3(]3))[((32233校本课程教材初高中衔接251abccba3333②,把②代入①得原式=33abcabc例6.解:(1)原式=|32||31|23311(2)原式=(1)(2)23(2)|1||2|(1)(2)1(1x2)xxxxxxxx例7.解:(1)原式=23(23)3(23)63323(23)(23)(2)原式=22ababababab(3)原式=2222222223222xxxxxxxxxxx例8.解:(1)原式=22(1)()(2)2221baaabbaabb(2)原式=11()()aaaabaababab()()2()()ababaababab例9.解:22(23)23743,74314,12323xyxyxy原式=2222()()()[()3]14(143)2702xyxxyyxyxyxy例10.解法一:原式=222(1)11(1)1(1)(1)11xxxxxxxxxxxxxxxxxxxxxxxxx校本课程教材初高中衔接252解法二:原式=22(1)1(1)(1)111()xxxxxxxxxxxxxxxxxxxxxxx例11.解:原式=22239611612(3)3(3)(3)2(3)(3)(39)(9)xxxxxxxxxxxxxxx22(3)12(1)(3)(3)32(3)(3)2(3)(3)2(3)xxxxxxxxxx练习1.C2.A3.(1)2229166824xyzxyxzyz(2)22353421aabbab(3)331164ab4.2()22212abaaaab5.2mmxy校本课程教材初高中衔接253第二讲因式分解例1.解:(1)333282(2)(42)xxxxx(2)333220.125270.5(3)(0.53)[0.50.53(3)]bbbbb2(0.53)(0.251.59)bbb例2.解:(1)3433223813(27)3(3)(39)abbbabbabaabb.(2)76663333()()()aabaabaabab22222222()()()()()()()()aabaabbabaabbaababaabbaabb例3.解:21052(5)(5)(5)(2)axaybybxaxybxyxyab例4.解:22222222()()abcdabcdabcabdacdbcd2222()()abcacdbcdabd()()()()acbcadbdbcadbcadacbd例5.解:22()()()()()xyaxayxyxyaxyxyxya例6.解:22222224282(24)xxyyzxxyyz222[()(2)]2(2)(2)xyzxyzxyz例7.解:(1)6(1)(6),(1)(6)7校本课程教材初高中衔接254276[(1)][(6)](1)(6)xxxxxx.(2)3649,491321336(4)(9)xxxx例8.解:(1)24(3)8,(3)852524[(3)](8)(3)(8)xxxxxx(2)15(5)3,(5)322215[(5)](3)(5)(3)xxxxxx例9.解:(1)222266(3)(2)xxyyxyxxyxy(2)22222()8()12(6)(2)xxxxxxxx(3)(2)(2)(1)xxxx例10.解:(1)21252(32)(41)xxxx3241(2)22568(2)(54)xxyyxyxy1254yy例11.解:222222616233316(3)5xxxxx(35)(35)(8)(2)xxxx例12.解:323234(1)(33)xxxx22(1)(1)3(1)(1)(1)[(1)3(1)]xxxxxxxxx22(1)(44)(1)(2)xxxxx练习校本课程教材初高中衔接2551.222(3)(39),(2)(42),(23)(469),aaammmxxx222222211211(2)(42),(2)(4),(2)(24)645525216pqppqqxyxyxyxycxyxycc2.2222()(),()(),nxxyyxyxxxyxxyy22222432()[()()],(1)(4321)amnbmnbmnbyxxxxx3.(2)(1),(36)(1),(13)(2),(9)(3)xxxxxxxx(9)(3),(5)(),(4)(7)xxmnmnabab4.322(2)(8),(3)(2),(3)(1)(23),(3)(3)(2)naxxxaababxxxxxxx2(23)(31),(2)(415),(772)(1),(21)(35)(675)xxxyxyababxxxx5.2()(3),(21)(21),(3)(52),(256)(256)xyayxxxxyabab23333(12)(12),()(),(1)(1),()(1)xyxyabababxyxyxxyxy校本课程教材初高中衔接256第三讲一元二次方程根与系数的关系例1.解:(1)2(3)42110,∴原方程有两个不相等的实数根.(2)原方程可化为:241290yy2(12)4490,∴原方程有两个相等的实数根.(3)原方程可化为:256150xx2(6)45152640,∴原方程没有实数根.例2.解:2(2)43412kk(1)141203kk;(2)141203kk;(3)4-12k0k31;(4)4-12k<0k>31.例3.解:可以把所给方程看作为关于x的方程,整理得:22(2)10xyxyy由于x是实数,所以上述方程有实数根,因此:222[(2)]4(1)300yyyyy,代入原方程得:22101xxx.综上知:1,0xy例4.解:由题意,根据根与系数的关系得:12122,2007xxxx(1)2222121212()2(2)2(2007)4018xxxxxx校本课程教材初高中衔接257(2)121212112220072007xxxxxx(3)121212(5)(5)5()2520075(2)251972xxxxxx(4)22212121212||()()4(2)4(2007)22008xxxxxxxx例5.解:(1)∵方程两实根的积为5∴222121[(1)]4(1)034,412154kkkkxxk所以,当4k时,方程两实根的积为5.(2)由12||xx得知:①当10x时,12xx,所以方程有两相等实数根,故302k;②当10x时,12120101xxxxkk,由于302k,故1k不合题意,舍去.综上可得,32k时,方程的两实根12,xx满足12||xx.例6.解:(1)假设存在实数k,使12123(2)(2)2xxxx成立.∵一元二次方程24410kxkxk的两个实数根∴2400(4)44(1)160kkkkkk,又12,xx是一元二次方程24410kxkxk的两个实数根校本课程教材初高中衔接258∴1212114xxkxxk∴222121212121212(2)(2)2()52()9xxxxxxxxxxxx939425kkk,但0k.∴不存在实数k,使12123(2)(2)2xxxx成立.(2)∵222121212211212()44224411xxxxxxkxxxxxxkk∴要使其值是整数,只需1k能被4整除,故11,2,4k,注意到0k,要使12212xxxx的值为整数的实数k的整数值为2,3,5.练习1.B2.A3.A4.35.9或36.1或47.21(1)1650(2)2mm8.3(1)(2)22kk校本课程教材初高中衔接259第四讲不等式例1.解:原不等式可以化为:(3)(2)0xx,于是:3020xx或3020xx333222xxxxxx或或所以,原不等式的解是32xx或.例2.解:(1)原不等式可化为:2120xx,即(3)(4)0xx于是:3030344040xxxxx或所以原不等式的解是34x.(2)原不等式可化为:240xx,即240(4)0xxxx于是:00044040xxxxxx或或所以原不等式的解是04xx或.例3.解:(1)不等式可化为(2)(4)0xx∴不等式的解是24x(2)不等式可化为2(2)0x∴不等式的解是2x(3)不等式可化为217()024x.∴不等式无解。校本课程教材初高中衔接260例4.解:显然0k不合题意,于是:222000111(2)4010kkkkkkkk或例5.解:由题意得:2011313(1)3kkkkk例6.解:(1)解法(一)原不等式可化为:33230230312210
本文标题:初高中数学衔接教材参考答案
链接地址:https://www.777doc.com/doc-3537329 .html