您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 1函数的概念(第一课时)
1.2.1函数的概念(第一课时)授课人:惠阳一中实验学校孙延忠思考一:你能举出几个生活中函数的例子吗?2294049htt一枚炮弹发射后,经过60s落到地面击中目标。炮弹的射高为4410m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是初中(传统)的函数的定义是什么?设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.2294049htt一枚炮弹发射后,经过60s落到地面击中目标。炮弹的射高为4410m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是思考二:(1)实例1中有几个变量?(2)这几个变量都有怎样的变化范围?(3)两个变量是通过什么实现对应的?具体是怎样对应的?实例分析105101525203026S/106km2t/年1979818385878991939597992001下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.实例分析205101525203026S/106km2t/年1979818385878991939597992001实例分析2思考:(1)实例2中有几个变量?(2)这几个变量都有怎样的变化范围?05101525203026S/106km2t/年1979818385878991939597992001实例分析2思考:(3)两个变量是通过什么实现对应的?具体是怎样对应的?“八五”计划以来我国城镇居民恩格尔系数变化情况199252.91993199919981997199619951994200050.149.948.649.946.444.541.939.21991200153.837.9时间(年)恩格尔系数(%)思考:(1)实例3中有几个变量?(2)这几个变量都有怎样的变化范围?(3)两个变量是通过什么实现对应的?是怎样对应的?总支出金额食物支出金额恩格尔系数实例分析3思考三:分析、归纳以上三个实例,它们有什么共同特点?二、讲解新课(一)函数的有关概念定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。定义域:x的取值范围A叫做函数的定义域;与x值相对应的y值叫做函数值。值域:函数值的集合()fxxA叫做函数的值域。•思考五:在这个定义中,你认为哪些是关键词句?怎样更深刻的理解这个概念?213)(xxxf例1、已知函数23f(a),f(a-1)(1)求函数的定义域;(2)求f(-3),f()的值;(3)当a0时,求的值。练习:1、求下列函数的定义域(1)(2)2、已知函数1()23fxx()24fxxx3()2fxxx(2),(2),(2)(2)ffff(1)求的值;(),(),()()fafafafa(2)求的值.三、小结:通过这节课的学习,你的收获是什么?1.本节课探讨了用集合和对应的语言描述函数的概念,并引进了函数符y=f(x).2.突出了函数概念的本质:两个非空数集间的一种确定的对应关系.四、作业1、P24A组1、3、4做作业本上2、《学海导航》P13目标训练1—5
本文标题:1函数的概念(第一课时)
链接地址:https://www.777doc.com/doc-3548284 .html