您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 广东省广州市2017届高考数学二模试卷(解析版)(理科)
2017年广东省广州市高考数学二模试卷(理科)选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x||x﹣1|<1},B={x|1﹣≥0},则A∩B=()A.{x|1≤x<2}B.{x|0<x<2}C.{x|0<x≤1}D.{x|0<x<1}2.若复数z满足(3﹣4i+z)i=2+i,则复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.执行如图所示的程序图,则输出的S值为()A.4B.3C.﹣2D.﹣34.从1,2,3,4,5这5个数字中任取3个数字组成没有重复数字的三位数,则这个三位数是偶数的概率为()A.B.C.D.5.函数f(x)=ln(|x|﹣1)+x的大致图象是()A.B.C.D.6.已知cos()=,则sinθ=()A.B.C.﹣D.﹣7.已知点A(4,4)在抛物线y2=2px(p>0)上,该抛物线的焦点为F,过点A作该抛物线准线的垂线,垂足为E,则∠EAF的平分线所在的直线方程为()A.2x+y﹣12=0B.x+2y﹣12=0C.2x﹣y﹣4=0D.x﹣2y+4=08.在棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱A1D1的中点,过C1,B,M作正方体的截面,则这个截面的面积为()A.B.C.D.9.已知k∈R,点P(a,b)是直线x+y=2k与圆x2+y2=k2﹣2k+3的公共点,则ab的最大值为()A.15B.9C.1D.﹣10.已知函数f(x)=2sin(ωx+)(ω>0)的图象在区间[0,1]上恰有3个最高点,则ω的取值范围为()A.[,)B.[,)C.[,)D.[4π,6π)11.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为()A.B.C.D.1612.定义在R上的奇函数y=f(x)为减函数,若m,n满足f(m2﹣2m)+f(2n﹣n2)≥0,则当1≤n≤时,的取值范围为()A.[﹣,1]B.[1,]C.[,]D.[,1]二、填空题(共4小题,每小题5分,满分20分)13.已知点O(0,0),A(﹣1,3),B(2,﹣4),=2+m,若点P在y袖上,则实数m=.14.《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷:“物不知数”中有如下问题:“今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二,问:物几何?”其意思为:“现有一堆物品,不知它的数目,3个3个数,剩2个,5个5个数,剩3个,7个7个数,剩2个,问这堆物品共有多少个?”试计算这堆物品至少有个.15.设(x﹣2y)5(x+3y)4=a9x9+a8x8y+a7x7y2+…+a1xy8+a0y9,则a0+a8=.16.在平面四边形ABCD中,连接对角线BD,已知CD=9,BD=16,∠BDC=90°,sinA=,则对角线AC的最大值为.三、解答题(共5小题,满分60分)解答须写出文字说明,证明过程或演算步骤17.(12分)设等比数列{an}的前n项和为Sn,已知a1a2a3=8,S2n=3(a1+a3+a5+…+a2n﹣1)(n∈N*)(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=nSn,求数列{bn}的前n项和Tn.18.(12分)如图,ABCD是边长为a的菱形,∠BAD=60°,EB⊥平面ABCD,FD⊥平面ABCD,EB=2FD=a(Ⅰ)求证:EF丄AC;(Ⅱ)求直线CE与平面ABF所成角的正弦值.19.(12分)某商场拟对商品进行促销,现有两种方案供选择.每种促销方案都需分两个月实施,且每种方案中第一个月与第二个月的销售相互独立.根据以往促销的统计数据,若实施方案1,顶计第一个月的销量是促销前的1.2倍和1.5倍的概率分别是0.6和0.4.第二个月销量是笫一个月的1.4倍和1.6倍的概率都是0.5;若实施方案2,预计第一个月的销量是促销前的1.4倍和1.5倍的概率分别是0.7和0.3,第二个月的销量是第一个月的1.2倍和1.6倍的概率分别是0.6和0.4.令ξi(i=1,2)表示实施方案i的第二个月的销量是促销前销量的倍数.(Ⅰ)求ξ1,ξ2的分布列:(Ⅱ)不管实施哪种方案,ξi与第二个月的利润之间的关系如表,试比较哪种方案第二个月的利润更大.销量倍数ξi≤1.71.7<ξi<2.3ξi2.3利润(万元)15202520.(12分)已知双曲线﹣y2=1的焦点是椭圆C:+=1(a>b>0)的顶点,且椭圆与双曲线的离心率互为倒数.(I)求椭圆C的方程;(Ⅱ)设动点M在椭圆C上,且|MN|=,记直线MN在y轴上的截距为m,求m的最大值.21.(12分)已知函数f(x)=﹣ax+b在点(e,f(e))处的切线方程为y=﹣ax+2e.(Ⅰ)求实数b的值;(Ⅱ)若存在x∈[e,e2],满足f(x)≤+e,求实数a的取值范围.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中.已知直线l的普通方程为x﹣y﹣2=0,曲线C的参数方程为(θ为参数),设直线l与曲线C交于A,B两点.(1)求线段AB的长(2)已知点P在曲线C上运动.当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.[选修4-5:不等式选讲]23.(I)已知a+b+c=1,证明(a+1)2+(b+1)2+(c+1)2≥;(Ⅱ)若对任总实数x,不等式|x﹣a|+|2x﹣1|≥2恒成立,求实数a的取值范围.2017年广东省广州市高考数学二模试卷(理科)参考答案与试题解析选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={x||x﹣1|<1},B={x|1﹣≥0},则A∩B=()A.{x|1≤x<2}B.{x|0<x<2}C.{x|0<x≤1}D.{x|0<x<1}【考点】1E:交集及其运算.【分析】求出A,B中不等式的解集,找出A与B的交集即可.【解答】解:由|x﹣1|<1,即﹣1<x﹣1<1,即0<x<2,即A={x|0<x<2},由1﹣≥0,即≥0,解得x≥1或x<0,即B={x|x≥1或x<0}则A∩B={x|1≤x<2},故选:A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.若复数z满足(3﹣4i+z)i=2+i,则复数z所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A3:复数相等的充要条件.【分析】把已知等式变形,利用复数代数形式的乘除运算化简求得z,得到z的坐标得答案.【解答】解:由(3﹣4i+z)i=2+i,得3﹣4i+z=,∴z=﹣2+2i.∴复数z所对应的点的坐标为(﹣2,2),位于第二象限.故选:B.【点评】本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.执行如图所示的程序图,则输出的S值为()A.4B.3C.﹣2D.﹣3【考点】EF:程序框图.【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:s=0,i=2,s=2,i=3,s=﹣1.i=4,s=3,i=5,s=﹣2,i=6,s=4,i=7>6,结束循环,输出s=4,故选:A.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.4.从1,2,3,4,5这5个数字中任取3个数字组成没有重复数字的三位数,则这个三位数是偶数的概率为()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n==60,再求出这个三位数是偶数包含的基本事件个数,由此能求出这个三位数是偶数的概率.【解答】解:从1,2,3,4,5这5个数字中任取3个数字组成没有重复数字的三位数,基本事件总数n==60,这个三位数是偶数包含的基本事件个数m==24,∴这个三位数是偶数的概率为p===.故选:B.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.5.函数f(x)=ln(|x|﹣1)+x的大致图象是()A.B.C.D.【考点】3O:函数的图象.【分析】化简f(x),利用导数判断f(x)的单调性即可得出正确答案.【解答】解:f(x)的定义域为{x|x<﹣1或x>1}.f(x)=,∴f′(x)=,∴当x>1时,f′(x)>0,当x<﹣2时,f′(x)>0,当﹣2<x<﹣1时,f′(x)<0,∴f(x)在(﹣∞,﹣2)上单调递增,在(﹣2,﹣1)上单调递减,在(1,+∞)上单调递增.故选A.【点评】本题考查了函数图象的判断,函数单调性的判断,属于中档题.6.已知cos()=,则sinθ=()A.B.C.﹣D.﹣【考点】GO:运用诱导公式化简求值.【分析】利用二倍角的余弦公式、诱导公式,求得sinθ的值.【解答】解:∵cos()=,∴cos(﹣θ)=2﹣1=﹣=sinθ,即sinθ=﹣,故选:C.【点评】本题主要考查二倍角的余弦公式、诱导公式的应用,属于基础题.7.已知点A(4,4)在抛物线y2=2px(p>0)上,该抛物线的焦点为F,过点A作该抛物线准线的垂线,垂足为E,则∠EAF的平分线所在的直线方程为()A.2x+y﹣12=0B.x+2y﹣12=0C.2x﹣y﹣4=0D.x﹣2y+4=0【考点】K8:抛物线的简单性质.【分析】先求出抛物线方程,再抛物线的定义可得|AF|=|AE|,所以∠EAF的平分线所在直线就是线段EF的垂直平分线,从而可得结论.【解答】解:∵点A(4,4)在抛物线y2=2px(p>0)上,∴16=8p,∴p=2∴抛物线的焦点为F(1,0),准线方程为x=﹣1,E(﹣1,4)由抛物线的定义可得|AF|=|AE|,所以∠EAF的平分线所在直线就是线段EF的垂直平分线∵kEF=﹣2,∴∠EAF的平分线所在直线的方程为y﹣4=(x﹣4),即x﹣2y+4=0故选D.【点评】本题考查抛物线的标准方程,考查学生的计算能力,属于基础题.8.在棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱A1D1的中点,过C1,B,M作正方体的截面,则这个截面的面积为()A.B.C.D.【考点】LA:平行投影及平行投影作图法.【分析】由于截面被平行平面所截,所以截面为梯形,取AA1的中点N,可知截面为等腰梯形,利用题中数据可求.【解答】解:取AA1的中点N,连接MN,NB,MC1,BC1,由于截面被平行平面所截,所以截面为梯形,且MN=BC1=,MC1=BN,=,∴梯形的高为,∴梯形的面积为()×=,故选C.【点评】本题的考点是棱柱的结构特征,主要考查几何体的截面问题,关键利用正方体图形特征,从而确定截面为梯形.9.已知k∈R,点P(a,b)是直线x+y=2k与圆x2+y2=k2﹣2k+3的公共点,则ab的最大值为()A.15B.9C.1D.﹣【考点】J9:直线与圆的位置关系.【分析】先根据直线与圆相交,圆心到直线的距离小于等于半径,以及圆半径为正数,求出k的范围,再根据P(a,b)是直线x+y=2k与圆x2+y2=k2﹣2k+3的公共点,满足直线与圆方程,代入直线与圆方程,化简,求出用k表示的ab的式子,根据k的范围求ab的最大值.【解答】解:由题意,圆心(0.0)到直线的距离d=≤解得﹣3≤k≤1,又∵k2﹣2k+3>0恒成立∴k的取值范围为﹣3≤k≤1,由点P(a,b)是直线x+y=2k与圆x2+y2=k2﹣2k+3的公共点,得(a+b)2﹣a2﹣b2=2ab=3k2+2k﹣3=3(k+)2﹣,∴k=﹣3时,ab的最大值为9.故选B.【点评】本题主要考查了直线与圆相交位置关系的判断,做题时考虑要全面,不要丢情况.10.已知函数f(x)=2sin(ωx+)(ω>0)的图象在区间[0,1]上恰有3个最高点,则ω的取值范围为()A.[,)B.[,)C.[,)D.[4π,6π)【考点】H2:正弦函数的图象.【分析】根据区间[0,1]上,求出ωx+的范围,由于在区间[0,1]上恰有3个最高点,建立
本文标题:广东省广州市2017届高考数学二模试卷(解析版)(理科)
链接地址:https://www.777doc.com/doc-3556053 .html