您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 2013高考数学(文)一轮复习课件:正弦定理和余弦定理
第6讲正弦定理和余弦定理【2013年高考会这样考】考查利用正、余弦定理判断三角形的形状和解三角形.【复习指导】1.强化正、余弦定理的记忆,突出一些推论和变形公式的应用.2.本节复习时,应充分利用向量方法推导正弦定理和余弦定理.3.重视三角形中的边角互化,以及解三角形与平面向量和三角函数的综合应用,能够解答一些综合问题.基础梳理1.正弦定理:asinA=bsinB=csinC=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sinA∶sinB∶sinC;(2)a=,b=,c=;(3)sinA=a2R,sinB=b2R,sinC=c2R等形式,以解决不同的三角形问题.2RsinA2RsinB2RsinC2.余弦定理:a2=,b2=,c2=.余弦定理可以变形为:cosA=b2+c2-a22bc,cosB=a2+c2-b22ac,cosC=a2+b2-c22ab.3.S△ABC=12absinC=12bcsinA=12acsinB=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4、S△ABC=12222babab2+c2-2bccosAa2+b2-2abcosCa2+c2-2accosB4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<bsinAa=bsinAbsinA<a<ba≥ba>ba≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sinA>sinB.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于().A.52B.102C.1063D.56解析由A+B+C=180°,知C=45°,由正弦定理得:asinA=csinC,即1032=c22.∴c=1063.答案C2.在△ABC中,若sinAa=cosBb,则B的值为().A.30°B.45°C.60°D.90°解析由正弦定理知:sinAsinA=cosBsinB,∴sinB=cosB,∴B=45°.答案B3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于().A.30°B.45°C.60°D.75°解析由余弦定理得:cosA=b2+c2-a22bc=1+4-32×1×2=12,∵0<A<π,∴A=60°.答案C4.在△ABC中,a=32,b=23,cosC=13,则△ABC的面积为().A.33B.23C.43D.3解析∵cosC=13,0<C<π,∴sinC=223,∴S△ABC=12absinC=12×32×23×223=43.答案C5.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.解析∵a2+b2-c2=-3ab,∴cosC=a2+b2-c22ab=-32,故C=150°为三角形的最大内角.答案150°考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.[审题视点]已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解由正弦定理得asinA=bsinB,3sinA=2sin45°,∴sinA=32.∵a>b,∴A=60°或A=120°.当A=60°时,C=180°-45°-60°=75°,c=bsinCsinB=6+22;当A=120°时,C=180°-45°-120°=15°,c=bsinCsinB=6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,sinA=13,则a=________.解析由正弦定理得:a=bsinAsinB=5×1322=523.答案523考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cosBcosC=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.[审题视点]由cosBcosC=-b2a+c,利用余弦定理转化为边的关系求解.解(1)由余弦定理知:cosB=a2+c2-b22ac,cosC=a2+b2-c22ab.将上式代入cosBcosC=-b2a+c得:a2+c2-b22ac·2aba2+b2-c2=-b2a+c,整理得:a2+c2-b2=-ac.∴cosB=a2+c2-b22ac=-ac2ac=-12.∵B为三角形的内角,∴B=23π.(2)将b=13,a+c=4,B=23π代入b2=a2+c2-2accosB,得b2=(a+c)2-2ac-2accosB,∴13=16-2ac1-12,∴ac=3.∴S△ABC=12acsinB=334(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cosA=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.解(1)由2cos2A2+cosA=0,得1+cosA+cosA=0,即cosA=-12,∵0<A<π,∴A=2π3.(2)由余弦定理得,a2=b2+c2-2bccosA,A=2π3,则a2=(b+c)2-bc,又a=23,b+c=4,有12=42-bc,则bc=4,故S△ABC=12bcsinA=3.考向三利用正、余弦定理判断三角形形状【例3】►在△ABC中,若(a2+b2)sin(A-B)=(a2-b2)sinC,试判断△ABC的形状.[审题视点]首先边化角或角化边,再整理化简即可判断.解由已知(a2+b2)sin(A-B)=(a2-b2)sinC,得b2[sin(A-B)+sinC]=a2[sinC-sin(A-B)],即b2sinAcosB=a2cosAsinB,即sin2BsinAcosB=sin2AcosAsinB,所以sin2B=sin2A,由于A,B是三角形的内角.故0<2A<2π,0<2B<2π.故只可能2A=2B或2A=π-2B,即A=B或A+B=π2.故△ABC为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.【训练3】在△ABC中,若acosA=bcosB=ccosC;则△ABC是().A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形解析由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC(R为△ABC外接圆半径).∴sinAcosA=sinBcosB=sinCcosC.即tanA=tanB=tanC,∴A=B=C.答案B考向四正、余弦定理的综合应用【例4】►在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=π3.(1)若△ABC的面积等于3,求a,b;(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.[审题视点]第(1)问根据三角形的面积公式和余弦定理列出关于a,b的方程,通过方程组求解;第(2)问根据sinC+sin(B-A)=2sin2A进行三角恒等变换,将角的关系转换为边的关系,求出边a,b的值即可解决问题.解(1)由余弦定理及已知条件,得a2+b2-ab=4.又因为△ABC的面积等于3,所以12absinC=3,得ab=4,联立方程组a2+b2-ab=4,ab=4,解得a=2,b=2.(2)由题意,得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA.当cosA=0,即A=π2时,B=π6,a=433,b=233;当cosA≠0时,得sinB=2sinA,由正弦定理,得b=2a.联立方程组a2+b2-ab=4,b=2a,解得a=233,b=433.所以△ABC的面积S=12absinC=233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练4】(2011·北京西城一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且cosB=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.解(1)因为cosB=45,所以sinB=35.由正弦定理asinA=bsinB,可得asin30°=103,所以a=53.(2)因为△ABC的面积S=12ac·sinB,sinB=35,所以310ac=3,ac=10.由余弦定理得b2=a2+c2-2accosB,得4=a2+c2-85ac=a2+c2-16,即a2+c2=20.所以(a+c)2-2ac=20,(a+c)2=40.所以a+c=210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.错因忽视三角形中“大边对大角”的定理,产生了增根.实录由1+2cos(B+C)=0,知cosA=12,∴A=π3,根据正弦定理asinA=bsinB得:sinB=bsinAa=22,∴B=π4或3π4.以下解答过程略.正解∵在△ABC中,cos(B+C)=-cosA,∴1+2cos(B+C)=1-2cosA=0,∴A=π3.在△ABC中,根据正弦定理asinA=bsinB,∴sinB=bsinAa=22.∵a>b,∴B=π4,∴C=π-(A+B)=512π.∴sinC=sin(B+A)=sinBcosA+cosBsinA=22×12+22×32=6+24.∴BC边上的高为bsinC=2×6+24=3+12.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=2a.(1)求ba;(2)若c2=b2+3a2,求B.[尝试解答](1)由正弦定理得,sin2AsinB+sinBcos2A=2sinA,即sinB(sin2A+cos2A)=2sinA.故sinB=2sinA,所以ba=2.(2)由余弦定理和c2=b2+3a2,得cosB=1+3a2c.由(1)知b2=2a2,故c2=(2+3)a2.可得cos2B=12,又cosB>0,故cosB=22,所以B=45°.按时完成活页限时训练
本文标题:2013高考数学(文)一轮复习课件:正弦定理和余弦定理
链接地址:https://www.777doc.com/doc-3575570 .html