您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 半导体物理学 - 6
SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure第六章半导体表面和MIS结构SurfaceofSemiconductorsandMISStructureSemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure半导体样品存在与外界接触的表面,必然要受外界的影响;表面处的原子和体内原子所处情况不同,因受力的不平衡,显然存表面能级。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure随着平面工艺的发展,半导体器件越来越趋于表面化,特别如MOS器件本身就是一种表面器件,表面的情况和器件性能直接有关。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure研究半导体表面现象,对改善器件性能、提高器件稳定性以及探索新器件都有重要意义。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure半导体理想表面是晶体原子规则排列自然终止的平面。如硅组成晶体时,每个原子与周围四个近邻原子构成共价键,每个硅原子最外层与八个电子有关。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure表面处的硅原子除可与体内三个原子共价外,体外方向上没有与之共价的原了,留下一个悬空的键,称为悬挂键,说明半导体表面有允许电子存在的能态,即所谓表面态。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure按量子力学原理,晶格的不完整使严格的周期势遭到破坏,从而在禁带产生附加能级。晶格表面处由于周期势发生中断,必然在禁带中引起称为达姆能级的附加能级。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure1932年,达姆提出并证实理想半导体表面的表面能态性质呈受主性,同半导体内Ⅲ族杂质一样,可接受电子和放出空穴。在半导体禁带中,它是一系列靠得很近的能级。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure实际半导体硅表面通常复有厚约十几至几十埃的天然薄氧化层。这层氧化层外面便是外部环境气氛。所以硅半导体真实表面应该是氧化层与半导体的交界面,氧化层及外表面。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure半导体硅的外表面,由于吸附作用存在“外表面能级”,因隔一层绝绝的二氧化硅层,难于与半导体体内交换电子,因此叫慢(表面)态,资料表明,其面密度约大于1013/cm2。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure内表面处的原子既与体内原子组成共价键,也与氧化层内的氧、硅离子有关在禁带中引入新的表面能态的能级可是施主型、也可是受主型,有些甚至有超强的复合作用。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure内表面能级能很快同半导体体内交换电于,常称快态。实验发观内表面态密度约1010/cm2~1011/cm2,且以受主型为主。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure天然氧化层难于控制和重复,通常都采用平面工艺中热生长法沉积SiO2层形成SiO2-Si系统进行研究SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure金属-绝缘体-半导体(MIS)结构是研究绝缘层中的电荷、绝缘体-半导体界面性质最有效的结构SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructureMIS结构又是MOS(金属-氧化物-半导体)晶体管、电荷耦合器件(CCD)等重要器件的基本组成部分,是一种具有实际应用价值的结构。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure表面感生电荷层SurfaceLayerwithInducedcharge通过建立垂直于半导体表面的电场或附着于表面的电荷,可以对半导体表面层产生影响。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure这种影响主要表现为在半导体表面内侧形成电荷层同时保持半导体内部电场为零,使外界的影响得到屏蔽。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure若外电场为Ei,p型半导体表面层内的电荷面密度Q和Ei有如下关系:SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure紧靠表面的半导体内侧电场强度若为Es,则可由电位移连续求得:式中εi为半导体表面外介质的介电常数,εs为表面内半导体的介电常数。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure半导体内侧的电场强度显然是表面感生电荷造成的由于半导体中体电荷密度较小,表面感生电荷层显然存在一定厚度。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure该电场从半导体表面到体内逐渐减弱,超过表面电荷层,电场下降为零,因此,外电场在表面电荷层中被逐渐屏蔽。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructureEiESdE≈0xP型半导体电力线最密的地方电场最强,Es代表表面层的最大电场。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructureQS又可表示为若同时存在外电场Ei和表面附着电荷Qi,则p型半导体中的感生电荷QS可表为SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure可以完全等价地认为外电场Ei被QS和Qi共同屏蔽所以半导体表面内侧建立了密度为QS的电荷层是外界影响的主要表现。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure特别要注意的是不同具体情形下,屏蔽外电场和表面附着电荷的感生电荷层具有不同性质。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructureEi>0时,表面感生电荷总是负电荷。对n型半导体,负电荷是靠将多子吸引至表面形成:SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure表面感生电荷层是多子积累层n型Ei积累层SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure对P型半导体,感生电荷层则是依靠排斥多子(空穴)所形成,表面感生电荷层由带负电的电离受主构成,称为耗尽层。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructurep型Ei耗尽层SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructureEi足够大时,表面还可以反型,即表面附近可以有数量显著的电子存在,形成所谓反型层。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure对于Ei<0的情形,不难看出n型半导体表面将形成耗尽层,p型半导体表面则形成积累层。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure许多实际问题都涉及到耗尽层和反型层,分别讨论如下:SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure耗尽层中,电场引起电势变化,并使能带向下弯曲形成空穴的势垒,耗尽情形SituationforDeplation以p型半导体Ei>0的情形为例进行讨论。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructureqUSU0xUSECEFEVP型半导体SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure只要表面多子势垒eUS足够高,耗尽近似就成立。耗尽层内,电场、电势分布和能带弯曲的情形与突变pn结中p型半导体一侧空间电荷区中的情形完全相同。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure若耗尽层厚度为d,则耗尽层电荷面密度QB可表为SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure若以表面势eUS代替pn结承受的电位差(UD-U),则SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure或把耗尽层厚度d写作把QB表为US的函数,可得SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure反型情形SituationforInversionP型半导体在Ei>0的情形下,耗尽层中空穴势能高于体内,因此多子空穴耗尽。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure对电子来说,耗尽层内的势能却低于体内,因而耗尽层中的电子浓度将高于体内。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure当表面势足够大,以至表面处的Ef高于本征费米能级时,表面处的电子浓度将超过空穴浓度,从而引起半导体材料反型。SemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructureqUFECEFEVEiqUSSemiconductorPhysicsChapter6SurfaceofSemiconductorsandMISStructure若以qUF表示体内Ei与EF之差,即费米势:则表面发生反型的条件可表为SemiconductorPhys
本文标题:半导体物理学 - 6
链接地址:https://www.777doc.com/doc-3621737 .html