您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 《等差数列的前n项和》教学课件2
等差数列的前n项和问题11+2+3+4+5+···+100=?高斯德国著名数学家高斯(CarlFriedrichCauss1777年~1855年),10岁时曾很快求出它的结果!解法1:∵1+100=101,2+99=101,3+98=101,4+97=101,···,···,49+52=101,50+51=101.∴1+2+3+4+5+···+100=50×101=5050.解法2∵1+99=100,2+98=100,3+97=100,…,…,…,47+53=100,48+52=100,49+51=100,∴1+2+3+4+5+···+100=49×100+150=5050解法3设:∵S=1+2+3+4+···+97+98+99+100,S=100+99+98+97+···+4+3+2+1,∴2S=(1+100)+(2+99)+(3+98)+(4+97)+···(97+4)+(98+3)+(99+2)+(100+1)=100×101s=100×(1+100)/2∴S=5050注:此法称倒序求和(属代数法)解法1与解法3的比较解法1:∵1+100=101,2+99=101,···,49+52=101,50+51=101.∴1+2+3+4+5+···+100=50×101=5050.解法3:设:∵S=1+2+···+99+100,S=100+99+···+2+1,∴2S=(1+100)+(2+99)+···+(99+2)+(100+1)=100×101s=100×(1+100)/2∴S=5050.解法1与解法3的比较解法1:∵1+100=101,2+99=101,···,49+52=101,50+51=101.∴1+2+3+4+5+···+100=50×101=5050.算术法解法3:设:∵S=1+2+···+99+100,S=100+99+···+2+1,∴2S=(1+100)+(2+99)+···+(99+2)+(100+1)=100×101s=100×(1+100)/2∴S=5050.解法1与解法3的比较解法1:∵1+100=101,2+99=101,···,49+52=101,50+51=101.∴1+2+3+4+5+···+100=50×101=5050.算术法解法3:设:∵S=1+2+···+99+100,S=100+99+···+2+1,∴2S=(1+100)+(2+99)+···+(99+2)+(100+1)=100×101s=100×(1+100)/2∴S=5050.解法3设:∵S=1+2+3+4+···+97+98+99+100,S=100+99+98+97+···+4+3+2+1,∴2S=(1+100)+(2+99)+(3+98)+(4+97)+···(97+4)+(98+3)+(99+2)+(100+1)=100×101s=100×(1+100)/2∴S=5050注:此法称倒序求和(属代数法)解法1与解法3的比较解法1:∵1+100=101,2+99=101,···,49+52=101,50+51=101.∴1+2+3+4+5+···+100=50×101=5050.算术法解法3:设:∵S=1+2+···+99+100,S=100+99+···+2+1,∴2S=(1+100)+(2+99)+···+(99+2)+(100+1)=100×101s=100×(1+100)/2∴S=5050.代数法(倒序求和)解决疑难问题定理:数列{an}是等差数列,m,n,p,q分别为自然数若m+n=p+q,则am+an=ap+aq.证明:设等差数列首项为a1,公差为d,则am+an=a1+(m-1)d+a1+(n-1)d=2a1+(m+n-2)dap+aq=a1+(p-1)d+a1+(q-1)d=2a1+(p+q-2)d∵m+n=p+q,∴m+n-2=p+q-2∴am+an=ap+aq猜想1设求等差数列{an}的前n项和为Sn,即Sn=a1+a2+a3+…+an,则sn=n(a1+an)/2探索1设:∵Sn=a1+a2+a3+…+an-2+an-1+an,,Sn=an+an-1+an-2+…+a3+a2+a1∴2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an-2+a3)+(an-1+a2)+(an+a1)?2Sn=n(a1+an)sn=n(a1+an)/2证明猜想1证明:∵Sn=a1+a2+a3+…+an-2+an-1+an,Sn=an+an-1+an-2+…+a3+a2+a1∴2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an-2+a3)+(an-1+a2)+(an+a1)∵1+n=2+n-1=3+n-2=…=n-2+3=n-1+2=n+1由定理得(a1+an)=(a2+an-1)=(a3+an-2)=…=(an-2+a3)=(an-1+a2)=(an+a1)∴2Sn=n(a1+an)∴sn=n(a1+an)/2∴sn=n(a1+an)/2由定理得(a1+an)=(a2+an-1)=(a3+an-2)=…=(an-2+a3)=(an-1+a2)=(an+a1)∴2Sn=n(a1+an)∴sn=n(a1+an)/2∴sn=n(a1+an)/2由定理得(a1+an)=(a2+an-1)=(a3+an-2)=…=(an-2+a3)=(an-1+a2)=(an+a1)∴2Sn=n(a1+a2)∴sn=n(a1+an)/2∴sn=n(a1+an)/2解法4:1+2+3+4+…+100=3+3+4+…+100=6+4+…+100=…=5050解法5:把问题1看成a1=1,d=1,n=100的等差数列,则根据等差数列的中项公式,得1+99=2×50,2+98=2×50,3+97=2×50,…,…,…,47+53=2×50,48+52=2×50,49+51=2×50,1+2+3+4+5+···+100=49×2×50+50+100=5050对问题1转换点看用数列观点:求等差数列1,2,3,4,5,6,…,n,…的前100项的和.从而研究等差数列:a1,a2,a3,…an,…设求等差数列{an}的前n项和为Sn,即Sn=a1+a2+a3+…+an用倒序求和法1∵Sn=a1+a2+a3+…+an-2+an-1+anSn=an+an-1+an-2+…+a3+a2+a1∴2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an-2+a3)+(an-1+a2)+(an+a1)∴2Sn=[a1+a1+(n-1)d]+[a1+d+a1+(n-2)d]+…+[a1+(n-2)d+a1+d]+[a1+(n-1)d+a1]∴2Sn=[2a1+(n-1)d]+[2a1+(n-1)d]+…+[2a1+(n-1)d]+[2a1+(n-1)d]∴2Sn=n[2a1+(n-1)d]∴Sn=n[2a1+(n-1)d]/2∴Sn=na1+n(n-1)d/2∴2Sn=[2a1+(n-1)d]+[2a1+(n-1)d]+…+[2a1+(n-1)d]+[2a1+(n-1)d]∴2Sn=n[2a1+(n-1)d]∴Sn=n[2a1+(n-1)d]/2∴Sn=na1+n(n-1)d/2∴2Sn=[2a1+(n-1)d]+[2a1+(n-1)d]+…+[2a1+(n-1)d]+[2a1+(n-1)d]∴2Sn=n[2a1+(n-1)d]∴Sn=n[2a1+(n-1)d]/2∴Sn=na1+n(n-1)d/2∴2Sn=[2a1+(n-1)d]+[2a1+(n-1)d]+…+[2a1+(n-1)d]+[2a1+(n-1)d]∴2Sn=n[2a1+(n-1)d]∴Sn=n[2a1+(n-1)d]/2∴Sn=n[a1+a1+(n-1)d]/2∵an=a1++(n-1)d∵Sn=n[a1+an]/2∴2Sn=[2a1+(n-1)d]+[2a1+(n-1)d]+…+[2a1+(n-1)d]+[2a1+(n-1)d]∴2Sn=n[2a1+(n-1)d]∴Sn=n[2a1+(n-1)d]/2∴Sn=n[a1+a1+(n-1)d]/2∵an=a1++(n-1)d∵Sn=n[a1+an]/2∴2Sn=[2a1+(n-1)d]+[2a1+(n-1)d]+…+[2a1+(n-1)d]+[2a1+(n-1)d]∴2Sn=n[2a1+(n-1)d]∴Sn=n[2a1+(n-1)d]/2∴Sn=n[a1+a1+(n-1)d]/2∵an=a1++(n-1)d∵Sn=n[a1+an]/2用倒序求和法2∵Sn=a1+a2+a3+…+an-2+an-1+an,则Sn=a1+(a1+d)+…+[a1+(n-1)d],(1)Sn=an+(an-d)+…+[an-(n-1)d],(2)由(1)+(2)得∴2Sn=(a1+an)+(a1+an)+…+(a1+an)用倒序求和法2∵Sn=a1+a2+a3+…+an-2+an-1+an,则Sn=a1+(a1+d)+…+[a1+(n-1)d],(1)Sn=an+(an-d)+…+[an-(n-1)d],(2)由(1)+(2)得n个∴2Sn=(a1+an)+(a1+an)+…+(a1+an)用倒序求和法2∵Sn=a1+a2+a3+…+an-2+an-1+an,则Sn=a1+(a1+d)+…+[a1+(n-1)d],(1)Sn=an+(an-d)+…+[an-(n-1)d],(2)由(1)+(2)得n个∴2Sn=(a1+an)+(a1+an)+…+(a1+an)=n(a1+an)用倒序求和法2∵Sn=a1+a2+a3+…+an-2+an-1+an,则Sn=a1+(a1+d)+…+[a1+(n-1)d],(1)Sn=an+(an-d)+…+[an-(n-1)d],(2)由(1)+(2)得n个∴2Sn=(a1+an)+(a1+an)+…+(a1+an)=n(a1+an)Sn=n[a1+an]/2用倒序求和法2∵Sn=a1+a2+a3+…+an-2+an-1+an,则Sn=a1+(a1+d)+…+[a1+(n-1)d],(1)Sn=an+(an-d)+…+[an-(n-1)d],(2)由(1)+(2)得n个∴2Sn=(a1+an)+(a1+an)+…+(a1+an)=n(a1+an)Sn=n[a1+an]/2等差数列的前n项和公式Sn=n[a1+an]/2(1)Sn=na1+n(n-1)d/2(2)问题11+2+3+4+5+···+100=?解:由题意可知,它是等差数列前n项和求和问题,则∵a1=1,an=100,n=100∴Sn=100(1+100)/2=5050.例1如图3-4,一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支.这个V形架上共放着多少支铅笔?解:由题意可知,这个V形架上共放着120层铅笔,且自下而上各层的铅笔数成等差数列,即为{an},其中a1=1,a120=120.根据等差数列前n项和的公式,得,S120=120×(1+120)/2=7260.答:V形架上共放着7260支铅笔.例2等差数列-10,-6,-2,2,…前多少项的和是54?解:设题中的等差数列为{an},前n项和是Sn,则a1=-10,d=-6-(-10)=4,设Sn=54根据等差数列前n项和的公式,得-10n+n(n-1)×4/2=54,整理得,n2-6n-27=0.解得n1=9n2=-3(舍去).因此等差数列-10,-6,-2,2,…前9项的和是54.小结一、等差数列的前n项和公式Sn=na1+n(n-1)d/2Sn=n[a1+an]/2二、运用和应用(1)函数思想(2)方程思想(3)数学应用思想(4)倒序求和法三、数学发现的方法学会猜想,学会证明.
本文标题:《等差数列的前n项和》教学课件2
链接地址:https://www.777doc.com/doc-3632532 .html