您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 数据挖掘与识别 > 工业大数据概念与价值
1/35工业大数据的概念与价值2/35序言:拥抱工业大数据时代的到来当前,以大数据、云计算、移动物联网等为代表的新一轮科技革命席卷全球,正在构筑信息互通、资源共享、能力协同、开放合作的制造业新体系,极大地扩展了制造业创新与发展空间。新一代信息通信技术的发展驱动制造业迈向转型升级的新阶段——数据驱动的新阶段,这是新的技术条件下制造业生产全流程、全产业链、产品全生命周期的数据可获取、可分析、可执行的必然结果,也是制造业隐性知识显性化不断取得突破的内在要求。习近平总书记强调,“要着力推动互联网与实体经济深度融合发展,以信息流带动技术流、资金流、人才流、物资流,促进资源配置优化,促进全要素生产率提升”。习总书记这段话深刻阐释了互联网与实体经济的关系,阐释了以互联网为代表的新一代信息通信技术融合创新推动实体经济转型升级的内在机理,也充分体现了工业大数据作为一种新的资产、资源和生产要素,在制造业创新发展中的作用。可以从三方面来理解。首先,资源优化是目标。新一代信息通信技术与制造业融合主要动力和核心目标就是不断优化制造资源的配置效率,就是要实现更好的质量、更低的成本、更快的交付、更多的满意度,就是要提高制造业全要素生产率。从企业竞争3/35的角度来看,企业是一种配置社会资源的组织,是通过对社会资本、人才、设备、土地、技术等资源进行组合配置来塑造企业竞争能力的组织,是一个通过产品和服务满足客户需求的组织,企业之间竞争的本质是资源配置效率的竞争,这是任何一个时代技术创新应用永恒追求的目标。其次,数据流动是关键。新一代信息通信技术是如何优化制造资源配置效率?信息流是如何带动技术流、资金流、人才流、物资流?关键是数据流动。从数据流动的视角来看,数字化解决了“有数据”的问题,网络化解决了“能流动”的问题,智能化要解决数据“自动流动”的问题,即能够把正确的数据在正确的时间以正确的方式传递给正确的人和机器,能够把海量的工业数据转化为信息,信息转化为知识,知识转化为科学决策,以应对和解决制造过程的复杂性和不确定性等问题,在这一过程中不断提高制造资源的配置效率。第三,工业软件是核心。工业大数据的核心在于应用,在于优化资源配置效率,其关键在于,数据如何转化为信息,信息如何转化为知识,知识如何转化为决策,其背后都有赖于软件,软件是人类隐性知识显性化的载体,软件构建了一套数据如何流动的规则体系,正是这套规则体系确保了正确的数据能够在正确的时间以正确的方式传递给正确的人和机器。工业软件作为一种工具、要素和载体,为制造业建立了一套信息空间与物理空间的闭环赋能体系,实现了物质生产4/35运行规律的模型化、代码化、软件化,使制造过程在虚拟世界实现快速迭代和持续优化,并不断优化物质世界的运行。5/35目录1.工业大数据的概念....................................................................................................11.1.工业大数据的内涵.............................................................................................11.2.工业大数据的定义.............................................................................................11.3.工业大数据的空间分布......................................................................................31.4.工业大数据的产生主体......................................................................................31.5.工业大数据的发展趋势......................................................................................51.6.工业大数据的特点.............................................................................................71.7.工业系统的本质特征..........................................................................................71.8.工业大数据的4V特征.....................................................................................101.9.工业大数据的新特征........................................................................................131.10.工业大数据应用特征........................................................................................152.工业大数据的价值..................................................................................................202.1.工业大数据的创新价值....................................................................................202.2.数据始终影响着人类工业化进程......................................................................202.3.数据在信息化过程中发挥着核心作用...............................................................222.4.工业大数据是新工业革命的基础动力...............................................................222.5.中国是制造大国,但不是制造强国...................................................................242.6.工业大数据提升制造智能化水平,推动中国工业升级.......................................262.7.工业大数据支撑工业互联网发展,促进中国工业转型.......................................282.8.工业大数据助力中国制造弯道取直...................................................................301/351.工业大数据的概念本章主要讨论工业大数据的概念、意义和发展历程。1.1.工业大数据的内涵本节主要讨论工业大数据的内涵,从空间分布、产生主体两个维度对工业大数据进行分类,并讨论数据产生主体和内容结构演化路径。1.2.工业大数据的定义工业大数据即工业数据的总和,我们把它分成三类,即企业信息化数据、工业物联网数据,以及外部跨界数据。其中,企业信息化和工业物联网中机器产生的海量时序数据是工业数据规模变大的主要来源。工业大数据是智能制造与工业互联网的核心,其本质是通过促进数据的自动流动去解决控制和业务问题,减少决策过程所带来的不确定性,并尽量克服人工决策的缺点。首先,企业信息系统存储了高价值密度的核心业务数据。上世纪六十年代以来信息技术加速应用于工业领域,形成了制造执行系统(MES)、企业资源规划(ERP)、产品生命周期管理(PLM)、供应链2/35管理(SCM)和客户关系管理(CRM)等企业信息系统。这些系统中积累的产品研发数据、生产制造数据、供应链数据以及客户服务数据,3/35存在于企业或产业链内部,是工业领域传统数据资产。其次,近年来物联网技术快速发展,工业物联网成为工业大数据新的、增长最快的来源之一,它能实时自动采集设备和装备运行状态数据,并对它们实施远程实时监控。最后,互联网也促进了工业与经济社会各个领域的深度融合。人们开始关注气候变化、生态约束、政治事件、自然灾害、市场变化等因素对企业经营产生的影响。于是,外部跨界数据已成为工业大数据不可忽视的来源。1.3.工业大数据的空间分布工业大数据不仅存在于企业内部,还存在于产业链和跨产业链的经营主体中。企业内部数据,主要是指MES、ERP、PLM等自动化与信息化系统中产生的数据。产业链数据是企业供应链(SCM)和价值链(CRM)上的数据,主要是指企业产品供应链和价值链中来自于原材料、生产设备、供应商、用户和运维合作商的数据。跨产业链数据,指来自于企业产品生产和使用过程中相关的市场、地理、环境、法律和政府等外部跨界信息和数据。1.4.工业大数据的产生主体人和机器是产生工业大数据的主体。人产生的数据是指由人输入到计算机中的数据,例如设计数据、业务数据、产品评论、新闻事件、法4/35律法规等。机器数据是指由传感器、仪器仪表和智能终端等采集的5/35数据。智能制造与工业互联网发展,应致力于推动数据的自动采集。对特定企业而言,机器数据的产生主体可分为生产设备和工业产品两类。生产设备是指作为企业资产的生产工具,工业产品是企业交付给用户使用的物理载体。前一类数据主要服务于智能生产,为智能工厂生产调度、质量控制和绩效管理提供实时数据基础;后一类数据则侧重于智能服务,通过传感器感知产品运行状态信息,帮助用户降低装备维修成本、提高运行效率、提供安全保障。随着互联网与工业的深度融合,机器数据的传输方式由局域网络走向广域网络,从管理企业内部的机器拓展到管理企业外部的机器,支撑人类和机器边界的重构、企业和社会边界的重构,释放工业互联网的价值。1.5.工业大数据的发展趋势从数据类型看,工业大数据可分为结构化数据、半结构化数据和非结构化数据。结构化数据即关系数据,存储在数据库里,可以用二维表结构来表达实体及其联系。不方便用二维表结构来表达的数据即称为非结构化数据,包括办公文档、文本、图片、各类报表、图像、音频、视频等。所谓半结构化数据,就是以XML数据为代表的自描述数据,它介于结构化数据和非结构化数据之间。二十世纪六十年代,计算机在企业管理中得到应用,经历了层次、网状等模型后,统一为关系模型,形成了以结构化数据为基础的6/35ERP/MES管理软件体系。七十年代,随着计算机图形学和辅助设计7/35技术的发展,CAD/CAE/CAM等工具软件生成了三维模型、工程仿真、加工代码等复杂结构文件,形成了以非结构化数据为基础的PDM技术软件体系。二十一世纪,互联网和物联网为企业提供大量的文本、图像、视音频、时序、空间等非结构化数据,进而引发工业数据中结构化数据与非结构化数据的规模比例发生了质的变化。近年来,智能制造和工业互联网推动了以“个性化定制、网络化协同、智能化生产和服务化延伸”为代表的新兴制造模式的发展,未来由人产生的数据规模的比重将逐步降低,机器数据所占据的比重将越来越大。2012年美国通用电气公司提出的工业大数据(狭义的),主要指工业产品使用过程中由传感器采集的以时空序列为主要类型的机器数据,包括装备状态参数、工况负载和作业环境等信息。1.6.工业大数据的特点在未来理想状态下,工业大数据应该作为工业系统相关要素在赛博空间的数字化映像、运行轨迹及历史痕迹。工
本文标题:工业大数据概念与价值
链接地址:https://www.777doc.com/doc-3659141 .html