您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2018学年成都九年级(上)期末数学模拟试卷
2017-2018学年四川省成都市九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.2.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.3.如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8B.12C.16D.204.若P1(x1,y1),P2(x2,y2)是函数y=图象上的两点,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0D.y2<y1<05.△ABC与△A′B′C′是位似图形,且△ABC与△A′BC′的位似比是2:3,那么这两个相似三角形面积的比是()A.2:3B.:C.4:9D.8:276.下列方程:①2x2﹣1=0,②3x2=﹣3,③x2+5x﹣7=0,④2x2+3x+8=0.无实数根的是()A.①②③④B.①③C.②④D.②③④7.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.B.C.D.8.已知:如图,⊙O的直径CD垂直于弦AB,垂足为P,且AP=4cm,PD=2cm,则⊙O的半径为()A.4cmB.5cmC.4cmD.2cm9.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x名,据题意可列方程为()A.x(x+1)=253B.x(x﹣1)=253C.D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④二.填空题(共4小题,满分16分,每小题4分)11.(4分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为.12.(4分)如图,在△ABC中,D为AB边上一点,△CBD∽△ACD,AD=6,BD=9,那么AC的长等于.13.(4分)把二次函数y=x2﹣2x+3的图象绕原点旋转180°后得到的图象的函数解析式为.14.(4分)如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D.若BD=3,AC=10,则△ACD的面积是.三.解答题(共6小题,满分54分)15.(12分)(1)计算:(π﹣5)0+cos45°﹣|﹣3|+()﹣1(2)解方程:x2﹣6x+8=016.(6分)先化简,再求值:(1﹣)÷,从﹣1,0,1,2中选择一个适当的数作为x的值代入.17.(8分)已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)18.(9分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试,按照成绩分为优秀、良好、合格与不合格四个等级,并绘制了如图不完整的统计图.(1)根据给出的信息,求扇形统计图中a和b的值,并补全条形统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比賽,预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?19.(9分)如图,一次函数y=kx+2的图象与反比例函数y=的图象在第一象限的交点于P,函数y=kx+2的图象分别交x轴、y轴于点C、D,已知△OCD的面积S△OCD=1,OA=2OC(1)点D的坐标为;(2)求一次函数解析式及m的值;(3)写出当x>0时,不等式kx+2>的解集.20.(10分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)已知关于x的方程x2﹣3x﹣7=0的两个根分别为x1、x2,则x12x2+x1x22=.22.(4分)如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是.23.(4分)点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是6,则k的值为.24.(4分)函数y=(x﹣1)2+4的对称轴是,顶点坐标是,最小值是.25.(4分)如图,正方形ABCD中,AD=4,E在AB上且AB=4BE,连接CE,作BF⊥CE于F,正方形对角线交于O点,连接OF,将△COF沿CE翻折得△CGF,连接BG,则BG的长为.五.解答题(共3小题,满分30分)26.(8分)某商店经营一种小商品,进价是每件40元.据市场调查,销售价是60元时,平均每星期的销售量是300件.而销售价每降价1元,平均每星期的期就多售出30件.(1)假定每件商品降价x元,商店每星期的销售量是y件,请写出y与x之间的函数关系式(请直接写出结果);(2)每件小商品销售价是多少元时,商店每星期销售这种小商品的利润吸最大?最大利润是多少?27.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.28.(12分)如图,抛物线y=ax2+bx+c经过点A(2,﹣3),且与x轴交点坐标为(﹣1,0),(3,0)(1)求抛物线的解析式;(2)在直线AB下方抛物线上找一点D,求出使得△ABD面积最大时点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2017-2018学年四川省成都市金牛区九年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】主视图有2列,每列小正方形数目分别为2,1.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.2.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.【分析】根据勾股定理求出OA,根据正弦的定义解答即可.【解答】解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sinA==,故选:A.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8B.12C.16D.20【分析】由四边形BCDE内接于⊙O知∠EFC=∠ABC=45°,据此得AC=BC,由EF是⊙O的直径知∠EBF=∠ECF=∠ACB=90°及∠BCF=∠ACE,再根据四边形BECF是⊙O的内接四边形知∠AEC=∠BFC,从而证△ACE≌△BFC得AE=BF,根据Rt△ECF是等腰直角三角形知EF2=16,继而可得答案.【解答】解:∵四边形BCDE内接于⊙O,且∠EDC=135°,∴∠EFC=∠ABC=180°﹣∠EDC=45°,∵∠ACB=90°,∴△ABC是等腰三角形,∴AC=BC,又∵EF是⊙O的直径,∴∠EBF=∠ECF=∠ACB=90°,∴∠BCF=∠ACE,∵四边形BECF是⊙O的内接四边形,∴∠AEC=∠BFC,∴△ACE≌△BFC(ASA),∴AE=BF,∵Rt△ECF中,CF=2、∠EFC=45°,∴EF2=16,则AE2+BE2=BF2+BE2=EF2=16,故选:C.【点评】本题主要考查圆周角定理,解题的关键是掌握圆内接四边形的性质、圆周角定理、全等三角形的判定与性质及勾股定理.4.若P1(x1,y1),P2(x2,y2)是函数y=图象上的两点,当x1>x2>0时,下列结论正确的是()A.0<y1<y2B.0<y2<y1C.y1<y2<0D.y2<y1<0【分析】根据反比例函数图象上点的坐标特征得y1=,y2=,然后利用求差法比较y1与y2的大小.【解答】解:把点P1(x1,y1)、P2(x2,y2)代入y=得y1=,y2=,则y1﹣y2=﹣=,∵x1>x2>0,∴x1x2>0,x2﹣x1<0,∴y1﹣y2=<0,即y1<y2.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5.△ABC与△A′B′C′是位似图形,且△ABC与△A′BC′的位似比是2:3,那么这两个相似三角形面积的比是()A.2:3B.:C.4:9D.8:27【分析】先利用位似的性质得到△ABC与△A′BC′的相似比是2:3,然后根据相似三角形的性质可得到这两个相似三角形面积的比.【解答】解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′BC′的位似比是2:3,∴△ABC与△A′BC′的相似比是2:3,∴这两个相似三角形面积的比为4:9.故选:C.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,也考查了相似三角形的性质.6.下列方程:①2x2﹣1=0,②3x2=﹣3,③x2+5x﹣7=0,④2x2+3x+8=0.无实数根的是()A.①②③④B.①③C.②④D.②③④【分析】逐一求出四个方程的根的判别式△的值,取△为负值的方程即可.【解答】解:①2x2﹣1=0中△=02﹣4×2×(﹣1)=8>0,此方程有两个不相等的实数根;②3x2=﹣3,即x2=﹣1<0,此方程没有实数根;③x2+5x﹣7=0中△=52﹣4×1×(﹣7)=53>0,此方程有两个不相等的实数根;④2x2+3x+8=0中△=32﹣4×2×8=﹣55<0,此方程没有实数根;故选:C.【点评】本题考查了根的判别式,牢记“①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根”是解题的关键.7.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.B.C.D.【分析】过点B作BP⊥AC,垂足为P,BP交DE于Q,三角形的面积公式求出BP的长度,由相似三角形
本文标题:2018学年成都九年级(上)期末数学模拟试卷
链接地址:https://www.777doc.com/doc-3665048 .html