您好,欢迎访问三七文档
信息技术IT:InformationTechnology包括四个部分:信息获取,信息传输,信息处理和信息应用。信息技术革命主要体现在三个方面:微电子技术数字技术光通信技术第一章引言第二章传输光路第三章光发射机第四章光接收机第五章光放大第一章引言光纤通信发展的历史、优点和应用光纤通信的概念光通信的概念光通信是利用光波来传送信息的。通信技术电通信光通信根据使用的电磁波频率范围分类:有线通信无线通信光纤通信是以光作为信息载体,以光纤作为传输介质的光信息传输技术。LASER通信是通过某种媒体进行的信息传递。光纤通信优点GOOD损耗低,0.2dB/km传输容量大,400nm,50THz重量轻,体积小,27g/kmfiber资源丰富,石英抗电磁干扰,不易串音,抗雷击,通信质量高防爆性能好宽带宽,大容量,能量集中,器件尺寸小,功耗低。。。。。。1.探索时期的光通信•在这个时期,美国麻省理工学院利用He-Ne激光器和CO2激光器进行了大气激光通信试验。由于没有找到稳定可靠和低损耗的传输介质,对光通信的研究曾一度走入了低潮。•1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器,给光通信带来了新的希望。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。•1880年,美国人贝尔(Bell)发明了用光波作载波传送话音的“光电话”。贝尔光电话是现代光通信的雏型。•原始形式的光通信:中国古代用“烽火台”报警,欧洲人用旗语传送信息。2现代光纤通信指明通过“原材料的提纯制造出适合于长距离通信使用的低损耗光纤”这一发展方向1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(OpticalFiber)进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。光纤发明人高锟CharlesK.Kao论文:《光频介质纤维表面波导》1966(Dielectric-FiberSufaceWaveguideforOpticalFrequency)提出:制造石英光纤可实现光纤通信指出三点:•光纤的容量很大•高纯石英光纤的损失可低达20dB/km•单模光纤的原理构造高锟——光纤之父光纤通信发明家高锟(左)1998年在英国接受IEE授予的奖章2009年诺贝尔物理学奖获得者英国华裔科学家高锟,美国科学家威拉德·博伊尔和乔治·史密斯。瑞典皇家科学院说,高锟在“有关光在纤维中的传输以用于光学通信方面”取得了突破性成就,他将获得今年物理学奖一半的奖金,共500万瑞典克朗(约合70万美元);博伊尔和史密斯发明了半导体成像器件——电荷耦合器件(CCD)图像传感器,将分享今年物理学奖另一半奖金。1970年,光纤研制取得了重大突破•1970年,美国康宁(Corning)公司研制成功损耗20dB/km的石英光纤。把光纤通信的研究开发推向一个新阶段。•1972年,康宁公司高纯石英多模光纤损耗降低到4dB/km。•1973年,美国贝尔(Bell)实验室的光纤损耗降低到2.5dB/km。1974年降低到1.1dB/km。•1976年,日本电报电话(NTT)公司将光纤损耗降低到0.47dB/km(波长1.2μm)。•在以后的10年中,波长为1.55μm的光纤损耗:1979年是0.20dB/km,1984年是0.157dB/km,1986年是0.154dB/km,接近了光纤最低损耗的理论极限。1970年康宁研制出低损失光纤Corning的3位科学家Dr.DonalKeck,Dr.BobMaurer,Dr.PeterSchultz于1970年研制出低损失光纤.光纤长度(米)29,28.1损失(dB/km)17,18.2芯直径(微米)3.7(单模)(Dr.Keck的实验室记录)Corning展览馆1970年,光纤通信用光源取得了实质性的进展•1970年,美国贝尔实验室、日本电气公司(NEC)和前苏联先后,研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质结半导体激光器(短波长)。虽然寿命只有几个小时,但它为半导体激光器的发展奠定了基础。•1973年,半导体激光器寿命达到7000小时。•1976年,日本电报电话公司研制成功发射波长为1.3μm的铟镓砷磷(InGaAsP)激光器。•1977年,贝尔实验室研制的半导体激光器寿命达到10万小时。•1979年美国电报电话(AT&T)公司和日本电报电话公司研制成功发射波长为1.55μm的连续振荡半导体激光器。由于光纤和半导体激光器的技术进步,使1970年成为光纤通信发展的一个重要里程碑实用光纤通信系统的发展•1976年,美国在亚特兰大(Atlanta)进行了世界上第一个实用光纤通信系统的现场试验。•1980年,美国标准化FT-3光纤通信系统投入商业应用。•1976年和1978年,日本先后进行了速率为34Mb/s的突变型多模光纤通信系统,以及速率为100Mb/s的渐变型多模光纤通信系统的试验。•1983年敷设了纵贯日本南北的光缆长途干线。•随后,由美、日、英、法发起的第一条横跨大西洋TAT-8海底光缆通信系统于1988年建成。•第一条横跨太平洋TPC-3/HAW-4海底光缆通信系统于1989年建成。从此,海底光缆通信系统的建设得到了全面展开,促进了全球通信网的发展。光纤通信的发展可以粗略地分为三个阶段:•第一阶段(1966~1976年),这是从基础研究到商业应用的开发时期。•第二阶段(1976~1986年),这是以提高传输速率和增加传输距离为研究目标和大力推广应用的大发展时期。•第三阶段(1986~),这是以超大容量、超长距离为目标、全面深入开展新技术研究的时期。3.光纤通信的应用光纤可以传输数字信号,也可以传输模拟信号。光纤在通信网、广播电视网与计算机网,以及在其它数据传输系统中,都得到了广泛应用。光纤宽带干线传送网和接入网发展迅速,是当前研究开发应用的主要目标。光纤通信的各种应用可概括如下:①通信网②构成因特网的计算机局域网和广域网③有线电视网(CATV)的干线和分配网数字机顶盒(STB-SetTopBox),宽带双向的多媒体通信网。④综合业务光纤接入网用户环路交换设备电复接设备卫星通信微波通信光纤通信移动通信发送机接收机传输系统用户终端用户终端用户用户用户终端用户终端用户环路交换设备电复接设备用户用户•现代通信方式示意图用户终端交换设备接入网电复接设备传输系统电/光光/电前端前端网卡电信号输入网卡电信号输出传输光路光纤通信系统的基本组成第一节光纤第二节无源光器件第二章传输光路传输光路要求传输光路指的是从光信号的产生到接收的整个光通路要求:1.没有光能的损失2.没有色散和脉冲展宽(延迟问题)3.光强的响应是线性的4.偏振不敏感性、相位稳定性第一节光纤2.1.1光纤的一般理论2.1.2通信用光纤的结构2.1.1光纤的一般理论射线理论光是一种频率很高的电磁波,而光纤本身是一种介质波导。全反射原理光线在均匀介质中是以直线传播的,但在两种不同介质的分界面会产生反射和折射现象:入射光反射光折射光折射率n1折射率n2n1n2θ1当n1n2θ1θc时发生全反射θc:临界角光纤中光波的传输原理-全反射“之”字线传输只要满足全内反射条件连续改变入射角的任何光射线都能在光纤纤芯内传输。当光在光纤中发生全反射现象时,由于光线基本上全部在纤芯区进行传播,没有光跑到包层中去,所以可以大大降低光纤的衰耗。n2n1光纤全反射纤芯8-10um包层125um涂覆层250umn1n2当光从折射率高(n1)的媒质入射到折射率低(n2)的媒质,入射角超过临界角时,光线在两种媒质的界面上不发生折射现象,只有反射。临界角:sinc=n2/n1横向谐振:2βta=nπ2.1.2通信光纤结构和制造1.光纤结构2.光纤的类型纤芯主要采用高纯度的SiO2二氧化硅,并掺有少量的掺杂剂,提高纤芯的光折射率n1;包层也是高纯度的二氧化硅,也掺杂一些掺杂剂,主要是降低包层的光折射率n2;涂层采用丙烯酸酯、硅橡胶、尼龙,增加机械强度和可弯曲性。2.1.2通信光纤的结构1.光纤的结构1.光纤的结构石英光纤芯层包层涂敷层护套:紧套松套芯包层树脂被覆层ncorenclad2.光纤的类型光纤的分类方法很多:按照光纤截面折射率分布来分类;按照光纤中传输模式数的多少来分类;按照光纤使用的材料来分类;按照传输的工作波长来分类。(1)按光纤截面上折射率分布分类按照截面上折射率分布的不同可以将光纤分为:阶跃型光纤(Step-IndexFiber,SIF)和渐变型光纤(Graded-IndexFiber,GIF。根据芯区折射率径向分布的不同,可分为:不同的折射率分布,传输特性完全不同(2)按传输模式的数量分类按光纤中传输的模式数量,可以将光纤分为多模光纤(Multi-ModeFiber,MMF)和单模光纤(SingleModeFiber,SMF)。在一定的工作波上,当有多个模式在光纤中传输时,则这种光纤称为多模光纤。单模光纤是只能传输一种模式的光纤,单模光纤只能传输基模(最低阶模),不存在模间时延差,具有比多模光纤大得多的带宽,这对于高码速传输是非常重要的。(3)按光纤的工作波长分类按光纤的工作波长可以将光纤分为:短波长光纤、长波长光纤和超长波长光纤。(4)按ITU-T建议分类按照ITU-T关于光纤类型的建议,可以将光纤分为G.651光纤(渐变型多模光纤)、G.652光纤(常规单模光纤)、G.653光纤(色散位移光纤)、G.654光纤(截止波长光纤)和G.655(非零色散位移光纤)光纤。按套塑(二次涂覆层)可以将光纤分为松套光纤和紧套光纤。现在实用的石英光纤通常有以下三种:阶跃型多模光纤、渐变型多模光纤和阶跃型单模光纤。单模光纤的种类•标准单模光纤(G.652光纤)•色散位移单模光纤(G.653光纤)•1550nm波长最低衰减光纤(G.654光纤)•非零色散位移光纤(G.655光纤)•色散补偿光纤(G.65X光纤)•色散平坦光纤在1310nm波长工作时,理论色散值为零,衰耗大;在1550nm波长工作时,传输损耗最低,色散系数较大。单通路速率达到STM-64时,需要采取色散调节手段。G.652光纤——标准单模光纤在我国占99%以上。虽称1310nm性能最佳光纤,但绝大部分却用于1550nm,其原因是在1310nm无实用化光放大器。它可传输2.5G或以2.5G为基群的WDM系统;但传输TDM的10G,面临色散受限的难题(色度色散与PMD)。G.653光纤——色散位移单模光纤实现了在1550nm波长低衰减和零色散。可以20Gbit/s系统,不需任何色散补偿。日本全国铺设。在1550nm波长,衰耗和色散皆为最小值,可实现大容量长距离传输。因出现四波混频效应(FWM),限制了它在WDM(波分复用)方面的应用。G.654光纤--1550nm波长最低衰减光纤选用纯SiO2芯来降低光纤的衰减最大优点:在1550nm波长的最低衰减为0.18dB/km制造困难,价格昂贵,不实用。截止波长移位的单模光纤,它的设计重点是降低1550nm波长处的衰减。1550nm损耗最小光纤,主要用于长再生中继距离的海底光缆。因既可传输TDM(时分复用模式)的10G,又可传以2.5G或10G为基群的WDM系统,所以近年倍受青睐。但理想的G.655光纤无法实现,因为在光纤的有效横截面积与色散斜率二方面难以均衡。目前,G.655光纤尚无国际统一规范。—大的有效面积,会有效地避免非线性效应,但将导致色散斜率的增加。—小的色散斜率将会便于色散的补偿;但其有效面积却减小。G.655光纤——非零色散位移光纤单模光纤主要技术规范光纤G.652G.653G.654G.655截止波长nm1270127015301470零色散波长nm1300-13241500-1600色散斜率ps/km.nm20.0930.085最大色散值ps/km.nm13103.53.53.5155020206.0典型损耗
本文标题:光通信技术高新讲座
链接地址:https://www.777doc.com/doc-3676392 .html