您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 高三数学上学期第一次月考试题文
专业的教育资料1注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.已知集合,,则的子集个数为()A.2B.4C.7D.82.设为向量,则“”是“”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知集合1,3,Am,1,Bm,ABA,则m()A.0或3B.0或3C.1或3D.1或34.曲线31xfxex在点0,2处的切线与坐标轴围成的三角形的面积为()A.2B.32C.54D.15.已知fx=x1e2{31(2)xfxx,则fln3=A.1eB.2eC.eD.ee6.下列四个函数中,以为最小正周期,且在区间,2上为减函数的是()A.sin2yxB.2cosyxC.cos2xyD.tanyx7.设,分别是定义在上的奇函数和偶函数,当时,,且,则不等式的解集是()A.B.C.D.8.在中,内角的对边分别为,若的面积为,且,则()专业的教育资料2A.B.C.D.9.若1,1xe,设lnax,1ln2xb,lnxce,则a,b,c的大小关系为()A.cbaB.bacC.abcD.bca10.下列几个命题:①是不等式的解集为R的充要条件;②设函数的定义域为R,则函数与的图象关于y轴对称;③若函数为奇函数,则;④已知,则的最小值为;其中不正确的有A.0个B.1个C.2个D.3个11.已知函数f(x)是定义在R上的可导函数,且对于∀x∈R,均有f(x)f′(x),则有()A.e2017f(-2017)f(0),f(2017)e2017f(0)B.e2017f(-2017)f(0),f(2017)e2017f(0)C.e2017f(-2017)f(0),f(2017)e2017f(0)D.e2017f(-2017)f(0),f(2017)e2017f(0)12.已知点是曲线上任意一点,记直线(为坐标原点)的斜率为,则()A.存在点使得B.对于任意点都有C.对于任意点都有D.至少存在两个点使得专业的教育资料3第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.已知命题,,命题,恒成立.若为假命题,则实数的取值范围为__________.14.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北的方向上,行驶600m后到达B处,测得此山顶在西偏北的方向上,仰角为,则此山的高度______15.若函数221fxxaxba的定义域和值域都是1,a,则实数b=______.16.已知函数,如果函数f(x)恰有两个零点,那么实数m的取值范围为_____.三、解答题17.已知命题p:曲线y=1与x轴没有交点;命题q:函数f(x)=是减函数.若p或q为真命题,p且q为假命题,则实数m的取值范围.18.函数f(x)=Asin(ωx+φ)的部分图象如图所示.(1)求f(x)的最小正周期及解析式;(2)设函数g(x)=f(x)-cos2x,求g(x)在区间上的最小值.专业的教育资料419.在中,三个内角所对的边分别为,且满足.求角C的大小;若的面积为,求边c的长.20.(1)已知,求的解析式;(2)已知是一次函数,且满足,求的最小值.21.已知函数242xxaafxaa(0a且1a)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)求函数fx的值域;(Ⅲ)当1,2x时,220xmfx恒成立,求实数m的取值范围.22.已知函数2ln,fxbxgxaxxaR(1)若曲线fx与gx在公共点1,0A处有相同的切线,求实数,ab的值;(2)若0,1ab,且曲线fx与gx总存在公共的切线,求正数a的最小专业的教育资料专业的教育资料文数参考答案1-5DCADC6-10DBDDC11-12DB【解析】【分析】根据集合交集的定义和集合中子集的个数的计算公式,即可求解答案.【详解】由题意集合,∴,∴的子集个数为.故选D.【点睛】本题主要考查了集合的交集运算及子集个数的判定,其中熟记集合交集的运算和集合中子集个数的计算公式是解答的关键,着重考查了推理与计算能力,属于基础题.2.C【解析】先讨论充分性:由得所以“”是“”的充分条件.再讨论必要性:因为,所以,所以“”是“”的必要条件.故选C.3.A【解析】试题分析:由ABA可知B是A的真子集,所以3m,0m满足,故应选A.考点:集合的并集运算.4.D【解析】由题'3xfxe,0'032kfe切线,切线方程为220yx,即2+2yx,与坐标轴的交点为(0.2)和(1,0)专业的教育资料所以与坐标轴围成的三角形的面积为12112,故选D.5.C【解析】因为fx=1e2{31(2)xxfxx,所以ln31ln311ln3ln31eee33eff.点睛:本题考查分段函数的求值问题。对于求分段函数的函数值,要首先确定要求值的自变量ln3属于区间2x,所以ln3ln31ff,此时ln312然后代入2x这一段的解析式根据指数及对数的运算性质求值,另外注意当出现f(f(a))的形式时,应从内到外依次求值.6.D【解析】A选项,函数在3,24上单调递减,在3,4上单调递增,故排除;B选项,函数在,2上单调递增,故排除;C选项,函数的周期是4,故排除;故选D7.B【解析】分析:求出的导数,由已知确定其正负,从而得单调性,再利用奇偶性得出结论.详解:设,∵,分别是定义在上的奇函数和偶函数,∴是上的奇函数,从而,∴,且.时,,∴在上是增函数,从而在上也是增函数.∴的解为.故选B.专业的教育资料点睛:本题考查由导数研究函数的单调性,解题时只要确定导数的正负就可以得出函数单调性,同时由奇函数的性质得出在和上单调性一致是解题关键.8.D【解析】【分析】利用三角形面积公式表示出,再利用余弦定理表示出,变形后代入已知等式,进而求出,最后得出的值【详解】,,代入已知等式可得:,故选【点睛】本题主要考查了余弦定理和同角三角函数间的基本关系,运用三角形面积公式代入化简,属于基础题9.D【解析】由题意:1,1,ln1,0xxe,由幂函数的单调性可得:lnln12xxe,即bc,且:ln1,1,ln1,0,xcexaxcae.本题选择D选项.点睛:实数比较大小:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但专业的教育资料很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.当底数与指数都不相同时,选取适当的“媒介”数(通常以“0”或“1”为媒介),分别与要比较的数比较,从而可间接地比较出要比较的数的大小.10.C【解析】时,不等式的解集为R,①错,②③正确,只有时,y的最小值为,但这是不可能的,④错,因此有2个错误,故选C.点睛:不等式的解集为R或恒成立,对这个不等式容易出现的错误是总认为是一元二次不等式,没有考虑系数为0的情形,从而会出现错误,直接利用判别式求解,在没有说明此不等式是一元二次不等式的时候一定要分类讨论,即分和,同时在时,还要分和两类再讨论.对所有出现的问题中都要有这个认识.11.D【解析】【分析】构造函数,由可得函数在上单调递减,利用单调性可得结果.【详解】构造函数,则,因为,均有,并且,故函数在上单调递减,,即,即,故选D.专业的教育资料【点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.12.B【解析】分析:任取正实数,则直线的斜率为,利用的性质,逐一判定,即可求解.详解:任取正实数,则直线的斜率为,因为,又由成立,因为和中两个个等号成立条件不一样,所以恒成立,即恒成立,排除A;当时,,则,排除C;对于D选项,至少存在两个点使得,即至少存在两解,即至少有两解,又因为恒成立,所以至多有一个解,排除D,综上所述,选项B是正确的,故选B.点睛:本题主要考查了函数性质的综合应用,以及直线的斜率公式,导数在函数中的应用,其中解答中根据题意构造函数,利用函数的单调性和最值求解是解答的关键,着重考查了转化思想和推理、论证能力.专业的教育资料13.【解析】分析:由题意首先确定p,q至少有一个是假命题,然后求解m的取值范围即可.详解:为假命题,则p,q至少有一个是假命题,若p为假命题,则,据此有:;若q为假命题,则,据此有:,解得:或;据此可得:实数的取值范围为.点睛:本题主要考查逻辑连接词,由命题的真假确定参数的取值范围等知识,意在考查学生的转化能力和计算求解能力.14.【解析】【分析】先根据已知条件得,在中利用正弦定理计算,再由为等腰直角三角形,即可求出结果.【详解】由题意可知,,,为等腰直角三角形,在中,,由正弦定理.故答案为.【点睛】本题考查解三角形的实际应用,从实际问题中抽象出三角形是解决问题的关键.15.5【解析】函数221fxxaxba的对称轴方程为1xa,所以函数22fxxaxb在[1,a]上为减函数,专业的教育资料又函数在[1,a]上的值域也为[1,a],则1{1fafa,即2212? {21? abaaab①②,由①得:b=3a−1,代入②得:2a−3a+2=0,解得:a=1(舍),a=2.把a=2代入b=3a−1得:b=5.故答案为5.点睛:二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数图象的顶点处取到;常见题型有:(1)轴固定区间也固定;(2)轴动(轴含参数),区间固定;(3)轴固定,区间动(区间含参数).找最值的关键是:(1)图象的开口方向;(2)对称轴与区间的位置关系;(3)结合图象及单调性确定函数最值.16.【解析】【分析】根据与-2,0和4的大小关系逐一判断的零点个数即可得出结论.【详解】若,则在上无零点,在上有1个零点,不符合题意;若,则在上有1个零点,在上有1个零点,符合题意;若0≤m<4,则在(上有2个零点,在上有1个零点,不符合题意;若,则在上有2个零点0,在上无零点,符合题意;∴或.故答案为:.【点睛】专业的教育资料本题考查了函数零点的个数判断,属于中档题.17..【解析】分析:分别求出p,q为真时的m的范围,通过讨论p真q假和p假q真,求出m的范围即可.详解:由y=1与x轴没有交点,知<0,∴m<;由q:f(x)=﹣(5﹣2m)x在R上是减函数,知5﹣2m>1,∴m<2由题意p,q一真一假,若p真q假,m.若p假q真,m综上所述,m的取值范围为点睛:“”,“”“”等形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题的真假;(3)确定“”,“”“”等形式命题的真假.18.(1)T=π,f(x)=sin;(2).【解析】【分析】由图象可得,,从而可求,再由图象经过点可以求得,代入即可写出函数的解析式求出,以为整体求值即可【详解】(1)由图可得A=1,,所以T=π,因此ω=2.当
本文标题:高三数学上学期第一次月考试题文
链接地址:https://www.777doc.com/doc-3688529 .html