您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 2018年齐黑大初中九年级数学中考模拟试题
第1页(共13页)2018年齐黑大初中九年级数学中考模拟试题学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)2018的相反数是()A.8102B.﹣2018C.D.20182.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.D.3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×103C.5.55×104D.55.5×1034.(3分)小明做了一下4道计算题:①﹣62=﹣36;②(﹣)2=;③(﹣4)3=﹣64;④(﹣1)100+(﹣1)1000=0请你帮他检查一下,他一共做对了()A.1道题B.2道题C.3道题D.4道题5.(3分)为了丰富学生课外小组活动,培养学生动手操作能力,田田老师让学生把5m长的彩绳截成2m或1m长的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法(同种长度的彩绳不考虑截的先后循序)()A.2B.3C.4D.56.(3分)如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.B.C.D.7.(3分)如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)()A.34.14米B.34.1米C.35.7米D.35.74米第2页(共13页)8.(3分)如图,在四边形ABCD中,DC∥AB,AD=5,CD=3,sinA=sinB=,动点P自A点出发,沿着边AB向点B匀速运动,同时动点Q自点A出发,沿着边AD﹣DC﹣CB匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ的面积为s,则s关于t的函数图象是()A.B.C.D.9.(3分)如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A.B.C.D.10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4B.3C.2D.1评卷人得分二.填空题(共7小题,满分21分,每小题3分)11.(3分)在函数y=+x﹣2中,自变量x的取值范围是.12.(3分)如图,AE=DF,∠A=∠D,欲证△ACE≌△DBF,需要添加条件,证明全等的理由是.13.(3分)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=40°,则∠ABC=.第3页(共13页)14.(3分)已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是.15.(3分)如图,过点O的直线AB与反比例函数y=的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y=(x<0)的图象交于点C,连接AC,则△ABC的面积为.16.(3分)如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为.17.(3分)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有个三角形(用含n的代数式表示)评卷人得分三.解答题(共8小题,满分69分)18.(5分)(1).先化简再求值:,其中x=2+.(5分)(2)在实数范围内分解因式:x4﹣4.19.(5分)解方程:2(x﹣3)2=x2﹣9.第4页(共13页)20.(8分)如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.(1)判断直线DC与⊙O的位置关系,并说明理由;(2)若HB=2,cosD=,请求出AC的长.21.(10分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.第5页(共13页)22.(10分)长春和吉林两地之间的铁路交通设有特快列车和普通快车两种车次,某天一辆普通快车从长春出发匀速驶向吉林,同时另一辆特快列车从吉林出发匀速驶向长春,两车与长春的距离s(千米)与行驶时间t(时)之间的函数关系如图所示.(1)长春到吉林的距离为千米,普通快车到达吉林所用时间为小时.(2)求特快列车与长春的距离s与t之间的函数关系式.(3)在长春、吉林两地之间有一座铁路桥,特快列车到铁路桥后又行驶0.5小时与普通快车相遇,求长春与铁路桥之间的距离.第6页(共13页)23.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.第7页(共13页)24.(14分)综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.第8页(共13页)2018年齐黑大初中九年级数学中考模拟试题参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.B.2.B.3.B.4.C.5.B.6.B.7.C.8.B.9.A.10.A.二.填空题(共7小题,满分21分,每小题3分)11.x≥﹣4且x≠0.12.∠E=∠F或∠ECF=∠FBD或AB=CD;ASA或AAS或SAS.13.70°.14.3π.15.8.16.2.17.(3n+1).三.解答题(共8小题,满分69分)18.(5分)先化简再求值:,其中x=2+.【解答】解:原式===;当时,原式=﹣=﹣4+2.(5分)在实数范围内分解因式:x4﹣4.【解答】解:原式=(x2+2)(x2﹣2),=(x2+2)(x+)(x﹣).19.(5分)解方程:2(x﹣3)2=x2﹣9.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.20.【解答】解:(1)连接OC,∵∠COB=2∠A,∠D=2∠A∴∠COB=∠D,∵DE⊥AP,∴∠DEP=90°,在Rt△DEP中,∠DEP=90°,∴∠P+∠D=90°∴∠P+∠COB=90°,∴∠OCP=90°,∴半径OC⊥DC,∴DC与⊙O相切(2)由(1)可知:∠OCP=90°,∠COP=∠D,∴cos∠COP=cos∠D=,∵CH⊥OP∴∠CHO=90°,第9页(共13页)设⊙O的半径为r,则OH=r﹣2在Rt△CHO中,cos∠HOC===∴r=5∴OH=5﹣2=3∴由勾股定理可知:CH=4,∴AH=AB﹣HB=10﹣2=8在Rt△AHC中,∠CHA=90°,∴由勾股定理可知:AC=421.【解答】解:(1)由题意c=18÷0.36=50,∴a=50×0.2=10,b==0.28,故答案为10,0.28,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数==6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×=528(名).22.【解答】解:(1)由图象可得,长春到吉林的距离为450千米,普通快车到达吉林所用时间为:450÷(150÷2.5)=7.5(小时),故答案为:450,7.5;(2)设特快列车与长春的距离s与t之间的函数关系式是s=kt+b,,解得,,即特快列车与长春的距离s与t之间的函数关系式是y=﹣120t+450;(3)设长春与铁路桥之间的距离是x千米,x=﹣120×(2.5﹣0.5)+450=﹣240+450=210,答:长春与铁路桥之间的距离是210千米.23.(12分)综合与实践【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,由折叠的性质得,AE=AD,∠AEF=∠D=90°,∴∠D=∠DAE=∠AEF=90°,∴四边形AEFD是矩形,∵AE=AD,∴矩形AEFD是正方形;(2)解:NF=ND′,第10页(共13页)理由:连接HN,由折叠得,∠AD′H=∠D=90°,HF=HD=HD′,∵四边形AEFD是正方形,∴∠EFD=90°,∵∠AD′H=90°,∴∠HD′N=90°,在Rt△HNF与Rt△HND′中,,∴Rt△HNF≌Rt△HND′,∴NF=ND′;(3)解:∵四边形AEFD是正方形,∴AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,在Rt△AEN中,∵AN2=AE2+EN2,∴(8+x)2=82+(8﹣x)2,解得:x=2,∴AN=8+x=10cm,EN=6cm,∴EN:AE:AN=3:4:5,∴△AEN是(3,4,5)型三角形;(4)解:图4中还有△MFN,△MD′H,△MDA是(3,4,5)型三角形,∵CF∥AE,∴△MFN∽△AEN,∵EN:AE:AN=3:4:5,∴FN:MF:CN=3:4:5,∴△MFN是(3,4,5
本文标题:2018年齐黑大初中九年级数学中考模拟试题
链接地址:https://www.777doc.com/doc-3703003 .html