您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 初中数学:复习-函数.
初中函数基础回顾什么叫函数?在某变化过程中的两个变量x、y,当变量x在某个范围内取一个确定的值,另一个变量y总有唯一的值与它对应。这样的两个变量之间的关系我们把它叫做函数关系。对于上述变量x、y,我们把y叫x的函数。x叫自变量,y叫应变量。目前,我们已经学习了那几种类型的函数?二次函数变量之间的关系函数一次函数反比例函数y=kx+b(k≠0)正比例函数y=kx(k≠0)y=k/x(k≠0)y=ax²+bx+c(a,b,c是常数,a≠0)正比例函数引入定义一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.正比例函数的定义:注意:1.符合y=kx的形式2.比例系数k≠03.自变量的次数为1-5-4-3-2-154321-10-2-3-4-52345xy1xy21xy2画出正比例函数,的图象?xy2xy21随堂练习y=2x12y=x正比例函数y=kx(k≠0)的图象是xy0xy01k当k>0时,1k当k<0时,经过原点(0,0)和点(1,k)的一条直线。y=kx(k>0)y=kx(k<0)直线y=kx经过第一、三象限;直线y=kx经过第二、四象限。当k>0时直线y=kx经过一,三象限,x增大时,y的值也增大;当k<0时,直线y=kx经过二,四象限,x增大时,y的值反而减小。xy024y=2x1224y随x的增大而增大y随x的增大而减小y=x32-3-6xy0解析式y=kx(k>0)y=kx(k<0)图象图象位置函数变化正比例函数y=kx(k≠0)的图象是经过原点(0,0)和点(1,k)的一条直线。第一、三象限第二、四象限y随着x的增大而增大y随着x的增大而减小0xy0xy一次函数一、一次函数的定义:1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。当b_____时,函数y=____(k____)叫做正比例函数。kx+b≠0=0≠0思考kxy=kxn+b为一次函数的条件是什么?一.指数n=1二.系数k≠0(1).待定系数法;(2).实际问题的应用一次函数正比例函数解析式图象性质应用y=kx(k≠0)y=kx+b(k,b为常数,且k≠0)k0k0k0k0yxoyxoxyoyxok0,b0k0,b0k0,b0k0,b0yxoxyok0时,在Ⅰ,Ⅲ象限;k0时,在Ⅱ,Ⅳ象限.正比例函数是特殊的一次函数k0,b0时在Ⅰ,Ⅱ,Ⅲ象限;k0,b0时在Ⅰ,Ⅲ,Ⅳ象限k0,b0时,在Ⅰ,Ⅱ,Ⅳ象限.k0,b0时,在Ⅱ,Ⅲ,Ⅳ象限平行于y=kx,可由它平移而得当k0时,y随x的增大而增大;当k0时,y随x的增大而减小.反比例函数什么是反比例函数?忆一忆:一般地,函数(k是常数,k≠0)叫反比例函数.xky1kxykxy反比例函数的图象和性质:1.反比例函数的图象是;双曲线2.图象性质见下表:k0k0图象性质xky当k>0时,双曲线的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小。当k<0时,双曲线的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大。1.如图:一次函数的图象与反比例函数交于M(2,m)、N(-1,-4)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出反比例函数的值大于一次函数的值的x的取值范围.baxyxky综合运用:M(2,m)20-1N(-1,-4)yx综合运用:M(2,m)20-1N(-1,-4)yx(1)求反比例函数和一次函数的解析式;解:(1)∵点N(-1,-4)在反比例函数图象上∴k=4,又∵点M(2,m)在反比例函数图象上∴m=2∴M(2,2)∵点M、N都在y=ax+b的图象上∴y=2x-2∴xy4∴22ba4ba解得2a2b综合运用:yx20-1N(-1,-4)M(2,m)(2)根据图象写出反比例函数的值大于一次函数的值的x的取值范围.(2)观察图象得:当x-1或0x2时,反比例函数的值大于一次函数的值.二次函数定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数。其中x是自变量,a为二次项系数,ax2叫做二次项,b为一次项系数,bx叫做一次项,c为常数项。(1)等号左边是变量y,右边是关于自变量x的(3)等式的右边最高次数为,可以没有一次项和常数项,但不能没有二次项。注意:(2)a,b,c为常数,且(4)x的取值范围是任意实数。整式。a≠0.2(5)函数的右边是一个整式二次函数的一般形式:y=ax2+bx+c(其中a、b、c是常数,a≠0)二次函数的特殊形式:–当b=0时,y=ax2+c–当c=0时,y=ax2+bx–当b=0,c=0时,y=ax2一次函数y=kx+b(k≠0),其中包括正比例函数y=kx(k≠0),反比例函数y=(k≠0),二次函数y=ax2+bx+c(a≠0)。现在我们学习过的函数有:可以发现,这些函数的名称都形象地反映了函数表达式与自变量的关系。xk一农民用40m长的篱笆围成一个一边靠墙的长方形菜园,和墙垂直的一边长为Xm,菜园的面积为Ym2,求y与x之间的函数关系式,并说出自变量的取值范围。当x=12m时,计算菜园的面积。xmym2xm(40-2x)m解:由题意得:Y=x(40-2x)即:Y=-2x2+40x(0x20)当x=12m时,菜园的面积为:Y=-2x2+40x=-2×122+40×12=192(m2)
本文标题:初中数学:复习-函数.
链接地址:https://www.777doc.com/doc-3728319 .html