您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 国内外标准规范 > 传智播客Lucene3.0 精品课程
传智播客——IT就业培训专家推荐传智博客精品课程第一部分:概述1.我们在很多地方都可以看到搜索功能1,Windows系统中的有搜索功能:打开“我的电脑”,按“F3”就可以使用查找的功能,查找指定的文件或文件夹。搜索的范围是整个电脑中的文件资源。2,Eclipse中的帮助子系统:点击HelpHelpContents,可以查找出相关的帮助信息。搜索的范围是Eclipse的所有帮助文件。3,在BBS、BLOG等系统中提供的搜索文章的功能,如这里的贴吧的例子。搜索的范围是系统内的文章数据(都在数据库中)。4,搜索引擎,如Baidu或Google等,可以查询到互联网中的网页、PDF、DOC、PPT、图片、视频等。下图是使用百度搜索的效果:以上的查询功能都类似。都是查询的文本内容,都是相同的查询方式,即找出含有指定字符串的资源,不同的只是查询范围(分别为硬盘、所有帮助文件、数据库、互联网)。2.什么是全文检索对于搜索,按被搜索的资源类型,分为两种:可以转为文本的、多媒体类型。我们上一节提到的搜索功能都是搜索的可以转为文本的资源(第一种)。注意,百度或谷歌提供的音传智播客——IT就业培训专家乐或视频搜索不是多媒体搜索,他们是按文件名搜索。在智能手机上有一款音乐搜索的软件,可以让他听10秒钟的音乐,然后他就能上网找出这段音乐的名称、演奏者等信息。这是多媒体搜索。按搜索的方式,上一节提到的搜索功能都是不处理语义,只是找出包含指定词的所有资源(只对词进行匹配)。下图就是显示“中国的首都是哪里”这个搜索要求对应的结果,可以看到,是没有“北京”这个结果的,结果页面都是出现了这些词的网页:全文检索(Full-TextRetrieval)是指以文本作为检索对象,找出含有指定词汇的文本。全面、准确和快速是衡量全文检索系统的关键指标。关于全文检索,我们要知道:1,只处理文本。2,不处理语义。3,搜索时英文不区分大小写。4,结果列表有相关度排序。在信息检索工具中,全文检索是最具通用性和实用性的。3.学完后能做什么我们使用Lucene,主要是做站内搜索,即对一个系统内的资源进行搜索。如BBS、BLOG中的文章搜索,网上商店中的商品搜索等。使用Lucene的项目有Eclipse、Jira等。一般不做互联网中资源的搜索,因为不易获取与管理海量资源(专业搜索方向的公司除外)。所以,学完Lucene后我们就可以为自已的系统增加全文检索的功能。跟这个学习内容相关的练习为:为“传智手播客贴吧”增加搜索其中的文章的功能。4.全文检索不同于数据库搜索全文检索不同于数据库的SQL查询。(他们所解决的问题不一样,解决的方案也不一样,所以不应进行对比)。在数据库中的搜索就是使用SQL,如:SELECT*FROMtWHEREcontentlike‘%ant%’。这样会有如下问题:传智播客——IT就业培训专家匹配效果:如搜索ant会搜索出planting。这样就会搜出很多无关的信息。2.相关度排序:查出的结果没有相关度排序,不知道我想要的结果在哪一页。我们在使用百度搜索时,一般不需要翻页,为什么?因为百度做了相关度排序:为每一条结果打一个分数,这条结果越符合搜索条件,得分就越高,叫做相关度得分,结果列表会按照这个分数由高到低排列,所以第1页的结果就是我们最想要的结果。3.全文检索的速度大大快于SQL的like搜索的速度。这是因为查询方式不同造成的,以查字典举例:数据库的like就是一页一页的翻,一行一行的找,而全文检索是先查目录,得到结果所在的页码,再直接翻到这一页。所以数据库搜索不能替代全文检索。★第二部分:入门1.基础概念1(HelloWorld前)全文检索就如同ORM,是一个概念。ORM的框架有很多种:Hibernate、TopLink、iBatis等,我们之前学习的是Hibernate。同样的,全文检索领域中也有多种框架,Lucene就是其中的一个用开源的全文检索框架。Lucene的主页为:。本文档中所使用的Lucene为3.0.1的版本。以下两小节是Lucene中重要的概念。1.1.全文检索的工作流程如果信息检索系统在用户发出了检索请求后再去互联网上找答案,根本无法在有限的时间内返回结果。所以要先把要检索的资源集合放到本地,并使用某种特定的结构存储,称为索引,这个索引的集合称为索引库。由于索引库的结构是按照专门为快速查询设计的,所以查询的速度非常快。我们每次搜索都是在本地的索引库中进行,如下图:从图片上可以看出,我们不仅要搜索,还要保证数据集合与索引库的一致性。所以对于全文检索功能的开发,要做的有两个方面:索引库管理(维护索引库中的数据)、在索引库传智播客——IT就业培训专家中进行搜索。而Lucene就是操作索引库的工具。1.2.使用Lucene的API操作索引库索引库是一个目录,里面是一些二进制文件,就如同数据库,所有的数据也是以文件的形式存在文件系统中的。我们不能直接操作这些二进制文件,而是使用Lucene提供的API完成相应的操作,就像操作数据库应使用SQL语句一样。对索引库的操作可以分为两种:管理与查询。管理索引库使用IndexWriter,从索引库中查询使用IndexSearcher。Lucene的数据结构为Document与Field。Document代表一条数据,Field代表数据中的一个属性。一个Document中有多个Field,Field的值为String型,因为Lucene只处理文本。我们只需要把在我们的程序中的对象转成Document,就可以交给Lucene管理了,搜索的结果中的数据列表也是Document的集合。有了这些概念,可以写HelloWorld了,其他的概念可以在写完HelloWorld后再进行说明。传智播客——IT就业培训专家(HelloWorld后)2.1.索引库结构——倒排序索引我们需要对文档进行预处理,建立一种便于检索的数据结构,以此来提高信息检索的速度,这种数据结构就是索引。目前广泛使用的一种索引方式是倒排序索引。倒排序索引的原理就如同查字典。要先查目录,得到数据对应的页码,在直接翻到指定的页码。不是在文章中找词,而是从目录中找词所在的文章。这需要在索引库中生成一个词汇表(目录),在词汇表中的每一个条记录都是类似于“词所在文档的编号列表”的结构,记录了每一个出现过的单词,和单词出现的地方(哪些文档)。查询时先查词汇表,得到文档的编号,再直接取出相应的文档。把数据转成指定格式放到索引库中的操作叫做建立索引。建立索引时,在把数据存到索引库后,再更新词汇表。进行搜索时,先从检索词汇表开始,然后找到相对应的文档。如果查询中仅包含一个关键词,则在词汇表中找到该单词,并取出他对应的文档就可以了。如果查询中包含多个关键词,则需要将各个单词检索出的记录进行合并再取出相应的文档记录。如果词汇表中有一个词“传智播客”对应的文档编号列表为“1”。现在又有添加了一个包含“传智播客”的文档,则词汇表中的“传智播客”词后对应的编号列表变成了“1,2”。因为关键词的数量受实际语言的限制,所以不用担心词汇表会变的很大。2.2.索引文件的检索与维护,更新是先删除后创建维护倒排索引有三个操作:添加、删除和更新文档。但是更新操作需要较高的代价。因传智播客——IT就业培训专家为文档修改后(即使是很小的修改),就可能会造成文档中的很多的关键词的位置都发生了变化,这就需要频繁的读取和修改记录,这种代价是相当高的。因此,一般不进行真正的更新操作,而是使用“先删除,再创建”的方式代替更新操作。2.3.建立索引的执行过程(Store、Index)在建立索引时,先要把文档存到索引库中,还要更新词汇表。如下图:1.我们做的操作:把数据对象转成相应的Document,其中的属性转为Field。2.我们做的操作:调用工具IndexWriter的addDocument(doc),把Document添加到索引库中。3.Lucene做的操作:把文档存到索引库中,并自动指定一个内部编号,用来唯一标识这条数据。内部编号类似于这条数据的地址,在索引库内部的数据进行调整后,这个编号就可能会改变,同时词汇表中引用的编号也会做相应改变,以保证正确。但我们如果在外面引用了这个编号,前后两次去取,得到的可能不是同一个文档!所以内部编号最好只在内部用。4.Lucene做的操作:更新词汇表。把文本中的词找出并放到词汇表中,建立与文档的对应关系。要把哪些词放到词汇表中呢,也就是文本中包含哪些词呢?这就用到了一个叫做Analyzer(分词器)的工具。他的作用是把一段文本中的词按规则取出所包含的所有词。对应的是Analyzer类,这是一个抽象类,切分词的具体规则是由子类实现的,所以对于不同的语言(规则),要用不同的分词器。如下图:传智播客——IT就业培训专家时,相关代码为:doc.add(newField(title,article.getTitle(),Store.YES,Index.ANALYZED))。第三与第四个参数的意思为:枚举类型枚举常量说明StoreNO不存储属性的值YES存储属性的值IndexNO不建立索引ANALYZED分词后建立索引NOT_ANALYZED不分词,把整个内容作为一个词建立索引说明:Store是影响搜索出的结果中是否有指定属性的原始内容。Index是影响是否可以从这个属性中查询(No),或是查询时可以查其中的某些词(ANALYZED),还是要把整个内容作为一个词进行查询(NOT_ANALYZED)。2.4.从索引库中搜索的执行过程(QueryParser、TopDocs、ScoreDoc)在进行搜索时,先在词汇表中查找,得到符合条件的文档编号列表。再根据文档编号真正的去取出数据(Document)。如下图:传智播客——IT就业培训专家,把要查询字符串转为Query对象。这就像在Hibernate中使用HQL查询时,也要先调用Session.createQuery(hql)转成Hibernate的Query对象一样。把查询字符串转换成Query是使用QueryParser,或使用MultiFieldQueryParser。查询字符串也要先经过Analyzer(分词器)。要求搜索时使用的Analyzer要与建立索引时使用的Analzyer要一致,否则可能搜不出正确的结果。2,调用IndexSearcher.search(),进行查询,得到结果。此方法返回值为TopDocs,是包含结果的多个信息的一个对象。其中有totalHits代表决记录数,ScoreDoc的数组。ScoreDoc是代表一个结果的相关度得分与文档编号等信息的对象。3,取出要用到的数据列表。调用IndexSearcher.doc(scoreDoc.doc)以取出指定编号对应的Document数据。在分页时要用到:一次只取一页的数据。3.HelloWorld1,准备场景2,添加Lucene环境3,完成功能a)建立索引b)从索引库中搜索要加入的jar包有:传智播客——IT就业培训专家lucene-core-3.0.1.jar(核心包)contrib\analyzers\common\lucene-analyzers-3.0.1.jar(分词器)contrib\highlighter\lucene-highlighter-3.0.1.jar(高亮)contrib\memory\lucene-memory-3.0.1.jar(高亮)★第三部分:深入1.索引
本文标题:传智播客Lucene3.0 精品课程
链接地址:https://www.777doc.com/doc-3731298 .html