您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 1.八年级第十一章全等三角形复习教案
第十一章全等三角形一、知识点:本章主要内容:全等三角形的性质;三角形全等的判定;角的平分线的性质.本章重点:探究三角形全等的条件和角的平分线的性质.难点:三角形全等的判定方法及应用;角的平分线的性质及应用.基础知识梳理教材知识全扫描1.全等三角形:1.⑴全等形:能够完全重合的两个图形叫全等形。⑵全等三角形的有关概念:能够完全重合的两个三角形叫全等三角形;两个全等三角形重合在一起,重合的顶点叫对应点,重合的边叫对应边,重合的角叫对应角。表示:△ABC≌△DEF教材P3一句话:2.三角形全等的性质:全等三角形对应边相等,对应角相等。全等三角形对应边上的中线、高、对应角平分线相等。全等三角形的周长、面积相等。3.全等三角形的判定:SAS,ASA,AAS,SSS,HL(直角三角形)特别提醒:“有两个角和一边分别相等的两个三角形全等”这句话正确吗?由于没有“对应”二字,结论不一定正确,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.SSA不能判定两三角形全等的例子在教材P10.4.尺规作图:(1)作一个角等于已知角(教材P7_8):步骤(2)作已知角的平分线(教材P19):步骤3.角平分线的性质:⑴角的平分线的性质:角的平分线上的点到角两边的距离相等。⑵角平分线的判定:教的内部到角两边距离相等的点在角的平分线上。⑶三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。4.实际应用P9例2,P13练习1,P15T4,P19探究,P21思考,P26T4P27T7二、经验与提示1.寻找全等三角形对应边、对应角的规律:①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.③有公共边的,公共边一定是对应边.④有公共角的,公共角一定是对应角.⑤有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角)2.找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。3.角的平分线是射线,三角形的角平分线是线段。4.证明线段相等的方法:(1)中点定义;(2)等式的性质;(3)全等三角形的对应边相等;(4)借助中间线段(即要证a=b,只需证a=c,c=b即可)。随着知识深化,今后还有其它方法。5.证明角相等的方法:(1)对顶角相等;(2)同角(或等角)的余角(或补角)相等;(3)两直线平行,同位角、内错角相等;(4)角的平分线定义;(5)等式的性质;(6)垂直的定义;(7)全等三角形的对应角相等;(8)三角形的外角等于与它不相邻的两内角和。随着知识的深化,今后还有其它的方法。6.证垂直的常用方法(1)证明两直线的夹角等于90°;(2)证明邻补角相等;(3)若三角形的两锐角互余,则第三个角是直角;(4)垂直于两条平行线中的一条直线,也必须垂直另一条。(5)证明此角所在的三角形与已知直角三角形全等;(6)邻补角的平分线互相垂直。7.全等三角形中几个重要结论(1)全等三角形对应角的平分线相等;(2)全等三角形对应边上的中线相等;(3)全等三角形对应边上的高相等。三、典型例题题型一运用全等三角形的性质解决角度和边的长度问题例1(基础题)已知△ABC≌△DEF,且∠A=52°,∠B=71°31′,DE=8.5cm,求∠F的大小与AB的长.分析:由三角形的内角和可求出∠C的度数,根据两个三角形全等,对应角相等、对应边相等,即可求出∠F的大小和AB的长.解:在△ABC中,∠A+∠B+∠C=180°(三角形的内角和等于180°),∴∠C=180°-(∠A+∠B)=180°-(52°+71°31′)=56°29′.∵△ABC≌△DEF,DE=8.5cm,∴∠F=∠C=56°29′,AB=DE=8.5cm.小结:本题是全等三角形的性质与三角形内角和定理的综合题,要求∠F和AB,可先找∠F的对应角∠C和AB的对应边DE,再根据全等三角形的性质求值.题型二利用全等变换解决几何问题例2(提高题)如图所示,图中是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为。即时练习如图1所示,长方形ABCD沿DE折叠,使点C恰好落在BA边上,得点C′,使∠C′EB=40°,求∠EDC′的度数.链接中考1.(2009·海南中考)5.已知图2中的两个三角形全等,则∠的度数是A.72°B.60°C.58°D.50°2.图2c58°ba72°50°ca3.MFECBA2、三角形全等是证明线段相等、角相等最基本、最常用的方法。例题1、如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC例题2、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=AD3、当题目中有角平分线时,可通过构造等腰三角形或全等三角形来寻找解题思路,或利用角平分线性质去证线段相等例题3、已知∠B=∠E=90°,CE=CB,AB∥CD.求证:△ADC是等腰三角形例题4、已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,DB=DC,求证:EB=FC4、证明线段的和、差、倍、分问题时,常采用“割长”、“补短”等方法例题5、如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证AB=AC+BDEDCABACEBDEDCBA4321EDCBAGFEDCBA提示:要证明两条线段的和与一条线段相等时常用的两种方法:(1)、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。(割)(2)、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。(补))三、你能用尺规进行下面几种作图吗?1、已知三边作三角形2、作一个角等于已知角3、已知两边和它们的夹角作三角形4、已知两角和它们的夹边作三角形5、已知斜边和一直角边作直角三角形6、作角的平分线四、学以致用1、如图:在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB交AB于E,BC=30,BD:CD=3:2,则DE=。2、如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?3、如图,已知,EG∥AF,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。(只写出一种情况)①AB=AC②DE=DF③BE=CF已知:EG∥AF,________,__________求证:_________4、如图,在R△ABC中,∠ACB=45°,∠BAC=90°,AB=AC,点D是AB的中点,AF⊥CD于H交BC于F,BE∥AC交AF的延长线于E,求证:BC垂直且平分DE.一.选择题(每题3分,共39分)1.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是()A.两角和其中一角的对边B.两边及夹角C.三个角D.三条边2.能使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两直角边对应相等3.假如两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形()A.一定全等B.一定不全等C.不一定全等D.面积相等4.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,假如AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4cmB.5cmC.6cmD.无法确定5.如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=500,∠AEC=1200,则∠DAC的度数等于()A.1200B.700C.600D.5006.某同学把一块三角形的玻璃打坏成了3块,现在要到玻璃店去配一块完全一样的玻璃,最省事的方法是()A.带①去B.带②去C.带③去D.①②③都带去7.在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,在下面判定中错误的是()A.若添加条件AC=A′C′,则△ABC≌△A′B′C′B.若添加条件BC=B′C′,则△ABC≌△A′B′C′C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′8.在△ABC和△A′B′C′中,①AB=A′B′,②BC=B′C′,③AC=A′C′,④∠A=∠A′,⑤∠B=∠B′,⑥∠C=∠C′,则下列条件组不能保证△ABC≌△A′B′C′的是()A.①②③B.①②⑤C.②④⑤D.①③⑤9.下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F10.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′11.如图,已知AB=DC,AD=BC,E、F在DB上,且BF=DE,若∠AEB=1200,∠ADB=300,则∠BCF=()A.150°B.40°C.80°D.90°12.如图,∠1=∠2,∠3=∠4,那么下列结论中不正确的是()A.BD=CDB.AB=ACC.BE=CED.∠3=∠1∠213.如图AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则()A.∠1=∠EFDB.BE=ECC.BF=DF=CDD.FD∥BC二、填空题(每小题3分,共39分)14.如图,AC,BD相交于点O,△AOB≌△COD,∠A=∠C,则其他对应角分别为,对应边分别为.15.如图,在△ABC中,∠C=900,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离.16.如图,∠1=∠2,要使△ABE≌△ACE,还需添加的一个条件是(填上你认为适当的一个条件即可).17.如图,AC⊥BD于O,BO=OD,图中共有全等三角形对.18.如图,沿AM折叠,使D点落在BC上的N点处,假如AD=7cm,DM=5cm,∠DAM=300,则AN=cm,NM=cm,∠NAM=.19.已知:如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为.(2)若以“ASA”为依据,还须添加的一个条件为.3)若以“AAS”为依据,还须添加的一个条件为.20.如图,已知在△ABC中,∠A=900,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.21.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件=.22.如图,若△ABC≌△ADE,∠EAC=35°,则∠BAD=度.23.如图,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,若,∠ADB=600,EO=10,则∠DBC=,FO=.24.如图,△DEF≌△ABC,且AC>BC>AB,则在△DEF中,______<______<_____.25.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转900得到△DCF,连接EF,若∠BEC=600,则∠EFD的度数为.26.在不等边△ABC中,∠APQ=∠PAQ,PM⊥AB,PN⊥AC,PM=PN。则下列结论:①AN=AM;②QP∥AM;③△BMP≌△ANP,其中正确的代号是.三、解答题(每小题9分,共72分)27.如图,AC=AD,BC=BD,图中有相等的角吗?请找出来,并说明你的理由.28.已知:如图,AC=AB,AE=AD,∠1
本文标题:1.八年级第十一章全等三角形复习教案
链接地址:https://www.777doc.com/doc-3736726 .html