您好,欢迎访问三七文档
UNIVERSITYOFCAMBRIDGENumericalAnalysisReportsLie-groupMethodsforIsospectralFlowsAntonellaZannaDAMTP1997/NA02March1997DepartmentofAppliedMathematicsandTheoreticalPhysicsSilverStreetCambridgeEnglandCB39EW1IntroductionWeaddressourselftotheproblemofevaluatingthenumericalsolutionofaclassofordinarydi erentialequationsonmatrices,knownunderthenameofisospectral ows.These owsariseinavarietyofmathematicalapplications,rangingfromlinearalgebratosolidstatephysicsandbiology.Untilfewyearsago,itwasacomputationalobservationthatclassicalmethodforOrdi-naryDi erentialEquations(ODEs)producedanumericaloutputthatwasnotisospectral,thusfailingtoretainthemainqualitativefeatureoftheassignedproblem.However,in1995,Calvo,IserlesandZannaestablishedatheoryaccordingtowhichclassicalmethodsforODEscouldnotbeisospectral,andtheypresentedothermethods(modi edGauss{LegendreRunge{Kuttamethods)toconstructisospectralsolutions.Inthispaperweproposetosolveisospectral owsusinganapproachbasedonLie-groupnumericalmethods.Althoughthisideamightappearcontrivedata rstglance,itiseasytoconvinceourselvesthatitisthenaturalwaytoanalysemathematicallyandsolvenumericallythisclassofproblems.TheproblemofintegratingODEsonLiegroupsstartedasearlyasinthe1880’s,withtheworkofSophusLie.Themethodofiteratedcommutators,thatwillbeintroducedinsectionx3isine ectintimatelyrelatedtothemethodofreductionforlinearODEsonLiegroupproposedbyLie[28].Asfarasweareaware,the rstnumerical(opposedtoanalytical)methodstointegrateODEsonLiegroupsappearedonlyin1993inapaperofCrouchandGrossman.Brie ylater,Munthe-KaasdevelopedLie-groupmethodsofaRunge{Kuttatype,whileOwrenandMarthinsendevelopedthetheoryofthemethodsproposedbyCrouchandGrossmaninamorecompletemanner.In1996,Zannaproposedthemethodofiteratedcommutators,basedonnumericalschemesforODEsintroducedbyIserlesin1984[12]andsubsequentlyIserlesandN rsettgeneralizedandrenderednumericallye cientanumericalapproach(theMagnusseries)introducedin1954byMagnus.Atpresent,manyissuesrelatedtothisclassofmethodsarebeingintenselyanalysed.SomemathematicianshavebeenskepticalwithregardstothepracticaluseofLie-groupmethods.Inasense,itiscounterintuitivetobelievethatLie-groupmethodscancompetewithclassicalexplicitschemesorwithprojectionmethods.However,numericalexperimentsindicateclearlythatLie-groupmethodscanbecheaperthanclassicalexplicitschemes:Lie-groupequationspossessalotoffeaturesandsymmetriesthat,intelligentlyexploited,leadtosuperiornumericalmethods.WithregardtoLie-groupmethodsforisospectral ows,itisfairtomentionthatin1994Helmke,MahonyandMooreintroducedanisospectralscheme(whichtheycalledaLiemethod)forthesolutionofdouble-bracket ows[17].However,theirmethodhasorderoneonly,whichmeansthatitisnotverycompetitiveifwewantagoodaccuracy.Theapproachthatwepresentinthispaperismuchmoregeneralandallowsustointroduce,analyseandimplementLie-groupmethodsofarbitrarilyhighorder.2Fromisospectral owstoLie-groupequations2.1IsospectralityandconservedintegralsIsospectral owsarecharacterizedbythematrixdi erentialequationL0=[B;L];L(0)=L0;(2.1)whereL;B2Rd dandL0isagivend dinitialmatrix.ThematrixfunctionB B(t;L)dependsonLand,possibly,onthetimet.ThesquarebracketsdenotethecommutatorLiebracketonmatrices,[B;L]=BL LB.Each owischaracterizedbythematrixB,whichisusuallyskew-symmetric,whileLisgenerallysymmetric.Forinstance,ifL andL+denotetheloweranduppertriangularpartofthematrixL,whenB(L)=L L+,thenwehavetheToda ow,associatedwiththeTodalatticeequationsgoverningthemotionoftheparticlesonaone-dimensionallatticeunderexponentialnearest-neighbourinteraction[24].WhenB(L)=f(L) f(L)+,fbeingananalyticfunctionofthespectrumofL,thenwehavetheQR ow(see[6]or[27]foralistofreferences).WhenB(L)=[N;L]fora xeddiagonalmatrixN,thenwehavethedouble-bracket ow[2],andsoon.Itiswellknownthatthesolutionof(2:1)isisospectral,namelythethespectrumoftheintegralcurveL(t)of(2:1)doesnotchangewithtime[24].ThedeigenvaluesofLarerelatedtothedconservedintegralsthathadbeendiscoveredbyH enonandFlaschkafortheTodalatticeequations.Theintegralsareininvolution,thereforeH enonandFlaschkaconcludedthattheTodalatticeequations,andconsequentlyalsotheotherisospectral ows,areintegrablesystems[24].Theconservedintegralscanbeintroducedbyconsideringthed-degreecharacteristicpolynomialassociatedwiththematrixL(t),p( )=det( I L)= d pd 1 d 1+ +( 1)dp0;whosezerosaretheeigenvalues i;i=1;:::;d;ofL.Sincetheeigenvaluesdonotdependontime,thecoe cientspd 1= 1+ + d;pd 2=dXi=1dXj=i+1 i j;...p0= 1 2 d:(symmetricpolynomials)areconstantandconstitutethedintegralsassociatedwiththe ow.Obviously,everyfunctionofthe isisanintegralofthe ow.However,inordertocharacterizeunivocallytheeigenvalues,oneneedstoindicatedindependentconditions,thatcanbechosenastr(Lr)=dXi=1 ri;r=1;:::;d;(2.2)2analternativetothesymmetricpolynomials[22,24].SuchconditionsareatthebasisoftheCalvo{Iserles{Zannaanalysisofnumericalmethodsandtheirretentionofisospectrality[6].Theyprovedthatclassicalnumericalmethods,suchasmultistepandRunge{Kuttaschemescannotbeisospectralford 3,inthesensethat,givenaclassicalnumericalmethod,itisalwayspos
本文标题:UNIVERSITY OF CAMBRIDGE Numerical Analysis Reports
链接地址:https://www.777doc.com/doc-3748013 .html