您好,欢迎访问三七文档
第5代移动通信技术(5G)引言:12月1日消息,发改委对外发布了关于组织实施2018年新一代信息基础设施建设工程的通知。通知中明确表示,明年各地将进一步的推进5G信号的研发工作。至少五个城市将开始开展5G网络建设,基站数量也将不少于50个。这次5G网络建设的主要指标为:明确在6GHz以下频段,在不少于5个城市开展5G网络建设,每个城市5G基站数量不少50个,形成密集城区连续覆盖;全网5G终端数量不少于500个;向用户提供不低于100Mbps、毫秒级时延5G宽带数据业务;至少开展4K高清、增强现实、虚拟现实、无人机等2类典型5G业务及应用。事实上,5G是一个通俗称法,官方名称为移动通信系统IMT-2020。5G(第五代移动通信)的概念和主要特征“4·2·1”01020304目录DIRECTORY5G研发的概况和进展5G关键能力体系01概念和主要特征概念:目前,全球业界对于5G的概念尚未达成一致。中国IMT-2020(5G)推进组发布的5G概念白皮书认为,综合5G关键能力与核心技术,5G概念可由“标志性能力指标”和“一组关键技术”来共同定义主要特征●5G的网络架构将进一步扁平化,它将是功能强大的基站叠加一个大服务器集群和更加新型化如“C-RAN”架构。●5G的基站将更加小型化,可以安装于各种场景;具备更强大的功能,将去除传统的汇聚节点;●5G时的网速极大提升。比4G/LTE的峰值传输速率每秒100M快100倍;●5G网络要满足超大带宽、超高容量、超密站点、超可靠性、随时随地接入的要求。025G关键能力体系03“4·2·1”四大技术场景两条技术路线一组关键技术大规模天线阵列超密集组网全新频谱接入新型多址大规模天线阵列在实际应用中,多天线的基站也可以同时瞄准多个用户,构造朝向多个目标客户的不同波束,并有效减少各个波束之间的干扰。这种多用户的波束成形在空间上有效地分离了不同用户间的电磁波,是大规模天线的基础所在大规模天线阵列是基于多用户波束成形的原理,在基站端布置几百根天线,对几十个目标接收机调制各自的波束,通过空间信号隔离,在同一频率资源上同时传输几十条信号。这种对空间资源的充分挖掘,可以有效利用宝贵而稀缺的频带资源,并且几十倍地提升网络容量。传统通信方式是基站与手机间单天线到单天线的电磁波传播,而在波束成形技术中,基站端拥有多根天线,可以自动调节各个天线发射信号的相位,使其在手机接收点形成电磁波的叠加,从而达到提高接收信号强度的目的。从基站方面看,这种利用数字信号处理产生的叠加效果就如同完成了基站端虚拟天线方向图的构造,因此称为“波束成形”(Beamforming)。通过这一技术,发射能量可以汇集到用户所在位置,而不向其他方向扩散,并且基站可以通过监测用户的信号,对其进行实时跟踪,使最佳发射方向跟随用户的移动,保证在任何时候手机接收点的电磁波信号都处于叠加状态。超密集组网全新频谱接入新型多址新波形F-OFDM(FilteredOFDM):实现统一空口的基础波形新多址技术SCMA(SparseCodeMultipleAccess)新编码技术PolarCodeSCMA和PolarCode在F-OFDM的基础上,进一步提升了连接数、可靠性和频谱效率,满足了ITU对5G的能力要求。045G研发的概况和进展第一阶段试验小结·华为、爱立信、中兴、三星、大唐、英特尔和诺基亚和上海贝尔完成了5G技术研发试验第一阶段测试·通过测试,各项关键技术的性能得到初步验证,测试结果基本符合预期−大规模天线:测试结果表明,相对于LTE-A,大规模天线可实现3~4的频谱效率提升,结合多址、编码等关键技术,可满足ITU频谱效率指标(3-5倍)提升需求−新型多址:相比于LTE,采用新型多址技术可获得86%以上的下行频谱效率提升和3倍上行用户连接能力提升−极化码:相比于传统的Turbo码,在静止和移动场景下可获得0.3~0.6dB的性能提升,同时,与高频段通信结合可实现20Gbps的数据传输能力,验证PolarCode能够很好地支持ITU定义三大场景−高频段通信:验证了高频段技术方案的可行性,同时,证明了利用高频通信技术可满足10-20Gbps的ITU峰值速率指标要求−新型多载波:通过大幅度降低带外泄露,可有效支持相邻子带的异步传输,可满足5G系统在统一技术框架基础上支持不同场景差异化技术方案的需求信息随心至,万物触手及谢谢•连续广域覆盖——这是移动通信最基本的覆盖方式,以保证用户的移动性和业务连续性为目标,为用户提供无缝的高速业务体验。该场景的主要挑战在于随时随地(包括小区边缘、高速移动等恶劣环境)为用户提供100Mbps以上的用户体验速率。•热点高容量——主要面向局部热点区域,为用户提供极高的数据传输速率,满足网络极高的流量密度需求。1Gbps用户体验速率、数十Gbps峰值速率和数十Tbps/km2的流量密度需求是该场景面临的主要挑战。•低功耗大连接——主要面向智慧城市、环境监测、智能农业、森林防火等以传感和数据采集为目标的应用场景,具有小数据包、低功耗、海量连接等特点。这类终端分布范围广、数量众多,不仅要求网络具备超千亿连接的支持能力,满足100万/km2连接数密度指标要求,而且还要保证终端的超低功耗和超低成本。•低时延高可靠——主要面向车联网、工业控制等垂直行业的特殊应用需求,这类应用对时延和可靠性具有极高的指标要求,需要为用户提供毫秒级的端到端时延和接近100%的业务可靠性保证。在5G无线技术路线方面,IMT推进组融合了4G继续演进和创新元素,明确5G空口的技术路线可以分为两部分:5G新空口(低频和高频)和4G演进空口,其中前者是主要方向。5G低频新空口将采用全新的空口设计,引入大规模天线、高频段通信、新型多载波、先进编码等先进技术,有效满足更加多样化的指标要求;5G高频新空口需要考虑高频信道和射频器件的影响,并针对波形、调制编码、天线技术等进行相应的优化。4G的OFDM,看看OFDM为什么满足不了5G时代的要求。OFDM将高速率数据通过串/并转换调制到相互正交的子载波上去,并引入循环前缀,较好地解决了令人头疼的码间串扰问题,在4G时代大放异彩,但OFDM最主要的问题就是不够灵活,FDM的时频资源分配方式在频域子载波带宽上是固定的15KHzF-OFDM能为不同业务提供不同的子载波间隔,以满足不同业务的时频资源需求。此时不同带宽的子载波之间本身不再具备正交特性,需要引入保护带宽,例如OFDM就需要10%的保护带宽,这样一来,F-OFDM的灵活性是保证了,频谱利用率会不会降低?正所谓鱼与熊掌不可兼得,灵活性与系统开销一向是一对矛盾。但是,F-OFDM通过优化滤波器的设计大大降低了带外泄露,不同子带之间的保护带开销可以降至1%左右,不仅大大提升了频谱的利用效率,也为将来利用碎片化的频谱提供了可能。多址技术决定了空口资源的分配方式,也是进一步提升连接数和频谱效率的关键。通过F-OFDM已经实现了在频域和时域的资源灵活复用,并把保护带宽降到了最小,那么为了进一步压榨频谱效率,还有哪些域的资源可以复用?最容易想到的自然是空域和码域。空分复用的MIMO技术在LTE时代就提出来了,在5G时代会通过更多的天线数来进一步发扬光大。那码域呢,在LTE时代它好像被遗忘了,在5G时代能否再现辉煌?SCMA正是采用这一思路,引入稀疏码本,通过码域的多址实现了连接数的3倍提升。SCMA通过引入稀疏码域的非正交,在可接受的复杂度前提下,经过外场测试验证,相比OFDMA,上行可以提升3倍连接数,下行采用码域和功率域的非正交复用,可显著提升下行用户的吞吐率超过50%以上。同时,由于SCMA允许用户存在一定冲突,结合免调度技术可以大幅降低数据传输时延,以满足1ms的空口时延要求。所谓信道极化,顾名思义就是信道出现了两极分化,是指针对一组独立的二进制对称输入离散无记忆信道,可以采用编码的方法,使各个子信道呈现出不同的可靠性,当码长持续增加时,一部分信道将趋向于完美信道(无误码),而另一部分信道则趋向于纯噪声信道。总结下Polar码的优点,首先是相比Turbo码更高的增益,在相同的误码率前提下,实测Polar码对信噪比的要求要比Turbo码低0.5~1.2dB,更高的编码效率等同于频谱效率的提升。其次,Polar码得益于汉明距离和SC算法设计的好,因此没有误码平层,可靠性相比Turbo码大大提升(Turbo码采用的是次优译码算法,所以有误码平层),对于未来5G超高可靠性需求的业务应用(例如远程实时操控和无人驾驶等),能真正实现99.999%的可靠性,解决垂直行业可靠性的难题。第三,PolarCode的译码采用了基于SC的方案,因此译码复杂度也大大降低,这样终端的功耗就大大降低了,在相同译码复杂度情况下相比Turbo码可以降低功耗20多倍,对于功耗十分敏感的物联网传感器而言,可以大大延长电池寿命。
本文标题:5G
链接地址:https://www.777doc.com/doc-3760155 .html