您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 制造加工工艺 > 23.1图形的旋转课件
请您欣赏世界如此美丽自转与公转(1)上面情景中的转动现象,有什么共同的特征?(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(1)上面情景中的转动现象,有什么共同的特征?(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?这个定点称为旋转中心,转动的角称为旋转角。旋转角旋转中心在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。AoB归纳定义把一个图形绕着某一定点O转动一个角度的图形变换叫做旋转.这个定点O叫旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点P和P′叫做这个旋转的对应点.120动态演示OP′P如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是什么?(2)经过旋转,点A、B分别移动到什么位置?(3)旋转角是什么?(4)AO与DO的长有什么关系?BO与EO呢?(5)∠AOD与∠BOE有什么大小关系?议一议旋转中心是O点D和点E的位置AO=DO,BO=EO∠AOD=∠BOE∠AOD和∠BOE都是旋转角(4)对应点到旋转中心的距离相等.旋转的基本性质(1)旋转不改变图形的大小和形状.(2)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度(3)任意一对对应点与旋转中心的连线所成的角度都是旋转角.例1:钟表的分针匀速旋转一周需要60分.(1)指出它的旋转中心;(2)经过20分,分针旋转了多少度?(2)分针匀速旋转一周需要60分,因此旋转20分,分针旋转的角度为1202060360解:(1)它的旋转中心是钟表的轴心;思考题如图:△ABC是等边三角形,D是BC边上的一点,△ABD经过旋转后到达△ACE的位置。(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果M是AB上中点,那么经过上述的旋转后,点M到了什么位置?MECABD可以看作是一个花瓣连续4次旋转所形成的,每次旋转分别等于720,1440,2160,2880思考题:香港区徽可以看作是什么“基本图案”通过怎样的旋转而得到的?本图案可以看做是一个菱形通过几次旋转得到的?每次旋转了多少度?也可以看做是二个相邻菱形通过几次旋转得到的?每次旋转了多少度?还可以看做是几个菱形通过几次旋转得到的?每次旋转了多少度?3个1次18002次1200,24005次600,1200,1800,2400,30003个1次600在图中,正方形ABCD与正方形EFGH边长相等,这个图案可以看作是哪个“基本图案”通过旋转得到的.简单的旋转作图项目已知未知备注源图形●点A源位置●点A旋转中心●点O旋转方向●顺时针旋转角度●60˚目标图形●点目标位置●点B(求作)AO点的旋转作法例1将A点绕O点沿顺时针方向旋转60˚.分析:作法:1.以点O为圆心,OA长为半径画圆;2.连接OA,用量角器或三角板(限特殊角)作出∠AOB,与圆周交于B点;3.B点即为所求作.B简单的旋转作图项目已知未知备注源图形●线段AB源位置●线段AB旋转中心●点O旋转方向●顺时针旋转角度●60˚目标图形●线段目标位置●线段CD(求作)AO线段的旋转作法例2将线段AB绕O点沿顺时针方向旋转60˚.分析:作法:1.将点A绕点O顺时针旋转60˚,得点C;2.将点B绕点O顺时针旋转60˚,得点D;3.连接CD,则线段CD即为所求作.CBD简单的旋转作图项目已知未知备注源图形●△ABC源位置●△ABC旋转中心●点C旋转方向●根据A与D的对应关系判断为顺时针旋转角度●∠ACD目标图形●三角形目标位置●△DEC(求作)图形的旋转作法例3如图,△ABC绕C点旋转后,顶点A得对应点为点D.试确定顶点B对应点的位置以及旋转后的三角形.分析:作法一:1.连接CD;2.以CB为一边,作∠BCE,使得∠BCE=∠ACD;3.在射线CB上截取CE,使得CE=CB;4.连接DE,则△DEC即为所求作.CABDE练习、1、如图正方形CDEF旋转后能与正方形ABCD重合,若O是CD的中点那么图形上可以作为旋转中心的点是_________OFECBAD练习、2、如图E是正方形ABCD内一点,将△ABE绕点B顺时针方向旋转到△CBF,其中EB=3cm,则BF=_____cm,∠EBF=______FCBADEC'B'ABC练习、3、如图∠C=30°,△ABC绕A点逆时针旋转30°后得到△AB’C’,则图中度数是30°的角有__________1234练习、4、如图将△ABC绕C点逆时针旋转30°后,点B落在B′,点A落在A’点位置,若A’C⊥AB,求∠B’A’C的度数。EA'B'BCA课下作业1.将下图中大写字母N绕它右下侧的顶点按顺时针方向旋转90˚,作出旋转后的图案.2.如图:E是正方形ABCD中CD边上的一点,以点A为中心,把△ADE顺时针旋转90°。画出旋转后的位置?CCABE课堂回顾:这节课,主要学习了什么?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转旋转的概念:旋转的性质:1、旋转不改变图形的大小和形状.2、任意一对对应点与旋转中心的连线所成的角度都是旋转角,旋转角相等.3、对应点到旋转中心的距离相等平移和旋转的异同:1、相同:都是一种运动;运动前后不改变图形的形状和大小2、不同运动方向运动量的衡量平移直线移动一定距离旋转顺时针逆时针转动一定的角度
本文标题:23.1图形的旋转课件
链接地址:https://www.777doc.com/doc-3763864 .html