您好,欢迎访问三七文档
线性代数北京邮电大学理学院线性代数行列式矩阵向量代数、平面与直线向量组的线性相关性线性方程组特征值与特征向量二次型空间曲面与曲线线性空间与线性变换Ch1行列式行列式排列N阶行列式行列式的性质行列式的计算行列式展开Cramer法则行列式§1二阶与三阶行列式一、二元线性方程与二阶行列式用消元法解二元线性方程组)2(.)1(,22221211212111bxaxabxaxa时,当021122211aaaa方程组的解为,211222112122211aaaabaabx)(3.211222112112112aaaaabbax22211211aaaa21122211aaaa,211222112122211aaaabaabx.211222112112112aaaaabbax222112112221211aaaaababx222112112121112aaaababax引入记号:二阶行列式元素行标列标D=DD1DD2.12,12232121xxxx求解二元线性方程组例1解由于,07)4(31223D,14)2(12112121D,21243121232D因此,271411DDx.372122DDx三元线性方程组;,,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa333231232221131211aaaaaaaaaD0二、三阶行列式322113312312332211aaaaaaaaa312213332112322311aaaaaaaaa;,,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa3332323222131211aabaabaabD若记333231232221131211aaaaaaaaaD或321bbb231233213233221aabaabaab312233312232231aabaabaab333231232221131211aaaaaaaaaD;,,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa;,,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3333123221131112abaabaabaD得,3333123221131112abaabaabaD得;,,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa333231232221131211aaaaaaaaaD;,,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3333123221131112abaabaabaD得;,,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa.3323122221112113baabaabaaD;,,333323213123232221211313212111bxaxaxabxaxaxabxaxaxa,3333123221131112abaabaabaD.3323122221112113baabaabaaD则三元线性方程组的解为:,11DDx,22DDx.33DDx333231232221131211aaaaaaaaaD,3332323222131211aabaabaabD例1解线性方程组.0,132,22321321321xxxxxxxxx解由于方程组的系数行列式111312121D1111321211111221315,0同理可得1103111221D,51013121212D,100111122213D,5故方程组的解为:,111DDx,222DDx.133DDx例2求解方程094321112xx方程左端的三阶行列式解:xxxxD9212184322652xx.320652xxxxD或,得由例3:计算行列式解:原式=-abc000***cba小结:二阶、三阶行列式概念二阶、三阶行列式计算(可用对角线法则记忆)行列式§2全排列与逆序数1.排列的相关概念n元排列:由1,2,…,n组成的一个有序数组。自然排列(标准次序):123…n逆序:在一个排列中,如果一对数的前后位置与大小顺序相反逆序数:排列中逆序的总数.逆序数求法有两种(1)定义(2)每元素前有几个比它大。(常用)3251401031于是排列32514的逆序数为13010.5)1(321212nnn解,21nn)1(2......21nnt32121nnn1n2n2.排列的奇偶性逆序数为奇数的排列奇排列:逆序数为偶数的排列偶排列:njipppp.........:1对换nijpppp.........1niipppp......:11相邻对换niipppp......11定理1:对排列进行一次对换则改变排列的奇偶性推论1:奇(偶)排列调为自然排列所需的对换次数为奇(偶)数推论2:所有n元排列(n1)中奇偶排列各半行列式§3n阶行列式的定义22211211aaaa21122211aaaa一、n阶行列式的定义思考(1)有多少项(2)每一项有什么不同(3)每项符号怎么确定312213332112322311aaaaaaaaa333231232221131211aaaaaaaaa322113312312332211aaaaaaaaa=nnnnnnaaaaaaaaaD212222111211nnnppppppaaa212121...)1()(特点:1.n2个元素2.共有n!项代数和3.每项为取自不同行不同列的元素构成4.正负项的个数相等5.当下标排列为偶排列时,取正号当下标排列为奇排列时,取负号)...(21)1(npppnnpppaaa...2121例:写出4阶行列式中带的项43342112aaaa3412aa答案:41342312aaaa例1证明n阶行列式n21其中未写出的元素都是0。n21对角形行列式;21n,212)1()1(nnn二、特殊的几类行列式计算00040030020010004321)1()4321(.240ijaji时,当下三角形行列式0ijaji时,当nnnnaaaaaaD212221110例2计算上三角形行列式nnnnaaaaaa00022211211.2211nnaaa.2211nnaaa443322118000650012404321aaaaD类似地.16085411111111111111111111211100nnnnnnnnnbbbbabbabbaa=例3========================1三、n阶行列式的等价定义nqqqqqqnnaaa21...2121)1()(=nnnnnnaaaaaaaaaD212222111211已知1211123111211xxxxxf.3的系数求x思考题解含的项有两项,即3x1211123111211xxxxxf4334221131241aaaat44332211(1234)1aaaa333)2(xxx.13的系数为故xCh1行列式§4行列式的性质一、行列式的性质性质1行列式与它的转置行列式相等.行列式称为行列式的转置行列式.TDD记nnaaa2211nnaaa21122121nnaaaD2121nnaaannaaa2112TDnnaaa2211证明的转置行列式记ijaDdet,212222111211nnnnnnTbbbbbbbbbD,,,2,1,njiabijij即按定义.1121212121nppptnppptTnnaaabbbD又因为行列式D可表示为.12121nppptnaaaD故.TDD推论如果行列式有两行(列)完全相同,则此行列式为零.性质2互换行列式的两行(列),行列式变号.jirr性质3行列式的某一行(列)中所有的元素都乘以同一数,等于用数乘此行列式.kknnnniniinaaakakakaaaa212111211nnnniniinaaaaaaaaak212111211推论行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.性质4行列式中如果有两行(列)元素成比例,则此行列式为零.证明nnnniniiiniinaaakakakaaaaaaa21212111211nnnniniiiniinaaaaaaaaaaaak21212111211.0性质5若行列式的某一列(行)的元素都是两数之和.nnnininnniiniiaaaaaaaaaaaaaaaD)()()(2122222211111211则D等于下列两个行列式之和:nnninnininnninniniaaaaaaaaaaaaaaaaaaD122211111122211111例如性质6把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.njnjninjjinjiaaaaaaaaaaaa12222111111njnjnjninjjjinjjijiaakaaaaakaaaaakaaakrr)()()(1222221111111k例如例12101044614753124025973313211D二、应用举例计算行列式常用方法:利用运算把行列式化为上三角形行列式,从而算得行列式的值.jikrr32101044614753124025973313211D3解2101044614753124022010013211312rr21010446147531402020100132112101044614753124022010013211312rr23122rr442rr22200201001402035120132112220035120140202010013211144rr133rr222000100021100351201321134rr222002010021100351201321123rr26000001000211003
本文标题:行列式ppt
链接地址:https://www.777doc.com/doc-3764060 .html