您好,欢迎访问三七文档
12定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。新定义的算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运算定律的。3【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。这里的“*”就代表一种新运算。在定义新运算中同样规定了要先算小括号里的。因此,在13*(5*4)中,就要先算小括号里的(5*4)。13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=264【练习1】1.将新运算“*”定义为:a*b=(a+b)×(a-b).。求27*9。2.设a*b=a2+2b,那么求10*6和5*(2*8)。3.设a*b=3a-b×1/2,求(25*12)*(10*5)。5【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。求3△(4△6)。【思路导航】根据定义先算4△6。在这里“△”是新的运算符号。3△(4△6)=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=656【练习2】1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。2.设p、q是两个数,规定p△q=p2+(p-q)×2。求30△(5△3)。3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。7【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。【思路导航】经过观察,可以发现本题的新运算“*”被定义为。因此7*4=7+77+777+7777=8638210*2=210+210210=2104208【练习3】1.如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。2.规定,那么8*5=________。3.如果2*1=1/2,3*2=1/33,4*3=1/444,那么(6*3)÷(2*6)=________。多少分?9【例题4】规定②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦=1/⑦×A,那么,A是几?【思路导航】这题的新运算被定义为:@=(a-1)×a×(a+1),据此,可以求出1/⑥-1/⑦=1/(5×6×7)-1/(6×7×8),这里的分母都比较大,不易直接求出结果。根据1/⑥-1/⑦=1/⑦×A,可得出A=(1/⑥-1/⑦)÷1/⑦=(1/⑥-1/⑦)×⑦=⑦/⑥-1。即A=(1/⑥-1/⑦)÷1/⑦=(1/⑥-1/⑦)×⑦=⑦/⑥-1=(6×7×8)/(5×6×7)-1=1又3/5-1=3/510【练习4】1.规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么A=________。2.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥=5×6×7,……如果1/⑩+1/⑾=1/⑾×□,那么□=________。3.如果1※2=1+2,2※3=2+3+4,……5※6=5+6+7+8+9+10,那么x※3=54中,x=________。11【例题5】设a⊙b=4a-2b+1/2ab,求z⊙(4⊙1)=34中的未知数x。【思路导航】先求出小括号中的4⊙1=4×4-2×1+1/2×4×1=16,再根据x⊙16=4x-2×16+1/2×x×16=12x-32,然后解方程4⊙1=4×4-2×1+1/2×4×1=16x⊙16=4x-2×16+1/2×x×16=12x-3212x-32=3412x=66x=5.512x-32=34,求出x的值。列算式为12【练习5】1.设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。2.对两个整数a和b定义新运算“△”:a△b=,求6△4+9△8。3.对任意两个整数x和y定于新运算,“*”:x*y=(其中m是一个确定的整数)。如果1*2=1,那么3*12=________。1314根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。15【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a-b-c=a-(b+c),使运算过程简便。所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=216【练习1】计算下面各题。17【例题2】计算33338712×79+790×6666114原式=333387.5×79+790×66661.25=(33338.75+66661.25)×790=100000×790=7900000018【练习2】19【例题3】计算:36×1.09+1.2×67.3原式=1.2×30×1.09+1.2×67.3=1.2×(32.7+67.3)=1.2×100=12020【练习3】21【例题4】计算:335×2525+37.9×625原式=335×2525+(25.4+12.5)×6.4=335×2525+25.4×6.4+12.5×6.4=(3.6+6.4)×25.4+12.5×8×0.8=254+8022【练习4】23【例题5】计算81.5×15.8+81.5×51.8+67.6×18.5原式=81.5×(15.8+51.8)+67.6×18.5=81.5×67.6+67.6×18.5=(81.5+18.5)×67.6=100×67.6=676024【练习5】2526计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。27【例题1】计算:1234+2341+3412+4123【思路导航】注意到题中共有4个四位数,每个四位数中都包含有1、2、3、4这几个数字,而且它们都分别在千位、百位、十位、个位上出现了一次,根据位值计数的原则,可作如下解答:原式=1×1111+2×1111+3×1111+4×1111=(1+2+3+4)×1111=10×1111=1111028【练习1】1.23456+34562+45623+56234+623452.45678+56784+67845+78456+845673.124.68+324.68+524.68+724.68+924.6829【例题2】【思路导航】原式=2.8×23.4+2.8×65.4+11.1×8×7.2=2.8×(23.4+65.4)+88.8×7.2=2.8×88.8+88.8×7.2=88.8×(2.8+7.2)=88.8×10=888245×23.4+11.1×57.6+6.54×2830【练习2】1.99999×77778+33333×666662.34.5×76.5-345×6.42-123×1.453.77×13+255×999+51031【例题3】【思路导航】计算1993×1994-11993+1992×1994原式=(1992+1)×1994-11993+1992×1994=1992×1994+1994-11993+1992×1994=132【练习3】33【例题4】有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少?【思路导航】20012-20002=2001×2000-20002+2001=2000×(2001-2000)+2001=2000+2001=400134【练习4】计算:1.19912-199022.99992+199993.999×274+627435【例题5】【思路导航】计算:(927+729)÷(57+59)36【练习5】3738在进行分数运算时,除了牢记运算定律、性质外,还要仔细审题,仔细观察运算符号和数字特点,合理地把参加运算的数拆开或者合并进行重新组合,使其变成符合运算定律的模式,以便于口算,从而简化运算。39【例题1】40【练习1】41【例题2】42【练习2】43【例题3】44【练习3】45【例题4】46【练习4】47【例题5】48【练习5】495051【例题1】52【练习1】53【例题2】54【练习2】55【例题3】56【练习3】57【例题4】58【练习4】59【例题5】60【练习5】61夏蜻蜓教育工作室QQ329854094962把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。如果甲是乙的a/b,乙是丙的c/d,则甲是丙的ac/bd;如果甲是乙的a/b,则乙是甲的b/a;如果甲的a/b等于乙的c/d,则甲是乙的c/d÷a/b=bc/ad63【例题1】乙数是甲数的2/3,丙数是乙数的4/5,丙数是甲数的几分之几?【思路导航】2/3×4/5=8/1564【练习1】1.乙数是甲数的3/4,丙数是乙数的3/5,丙数是甲数的几分之几?2.一根管子,第一次截去全长的1/4,第二次截去余下的1/2,两次共截去全长的几分之几?3.一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。他醒来时,发现剩下的路程是他睡着前所行路程的1/4。想一想,剩下的路程是全程的几分之几?他睡着时火车行了全程的几分之几?65转化单位一疯狂操练(二)【例题2】修一条8000米的水渠,第一周修了全长的1/4,第二周修的相当于第一周的4/5,第二周修了多少米?【思路导航】解一:8000×1/4×4/5=1600(米)解二:8000×(1/4×4/5)=1600(米)答:第二周修了1600米。66【练习2】用两种方法解答下面各题:1.一堆黄沙30吨,第一次用去总数的1/5,第二次用去的是第一次的1又1/4倍,第二次用去黄沙多少吨?2.大象可活80年,马的寿命是大象的1/2,长颈鹿的寿命是马的7/8,长颈鹿可活多少年?3.仓库里有化肥30吨,第一次取出总数的1/5,第二次取出余下的1/3,第二次取出多少吨?67转化单位一疯狂操练(三)【例题3】晶晶三天看完一本书,第一天看了全书的1/4,第二天看了余下的2/5,第二天比第一天多看了15页,这本书共有多少页?【思路导航】解:15÷【(1-1/4)×2/5-1/4】=300(页)答:这本书有300页。68【练习3】1.有一批货物,第一天运了这批货物的1/4,第二天运的是第一天的3/5,还剩90吨没有运。这批货物有多少吨?2.修路队在一条公路上施工。第一天修了这条公路的1/4,第二天修了余下的2/3,已知这两天共修路1200米,这条公路全长多少米?3.加工一批零件,甲先加工了这批零件的2/5,接着乙加工了余下的4/9。已知乙加工的个数比甲少200个,这批零件共有多少个?69转化单位一疯狂操练(四)【例题4】男生人数是女生人数的4/5,女生人数是男生人数的几分之几?【思路导航】解:把女生人数看作单位“1”。1÷4/5=5/4把男生人数看作单位“1”。5÷4=5/470【练习4】1.停车场里有小汽车的辆数是大汽车的3/4,大汽车的辆数是小汽车的几分之几?2.如果山羊的只数是绵羊的6/7,那么绵羊的只数是山羊的几分之几?3.如果花布的单价是白布的1又3/5倍,则白布的单价是花布的几分之几?71转化单位一疯狂操练(五)【例题5】甲数的1/3等于乙数的1/4,甲数是乙数的几分之几,乙数是甲数的几倍?【思路导航】解:1/4÷1/3=3/41/3÷1/4=1又1/3答:甲数是乙数的3
本文标题:举一反三6年级奥数
链接地址:https://www.777doc.com/doc-3776662 .html