您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 教编版22.3实际问题与二次函数(1)(公开课)
22.3实际问题与二次函数第1课时实际问题与二次函数(1)R·九年级上册11111新课导入问题:从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?31111推进新课问题:从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?分析:①由a=-5可得,图象的开口向下;②结合自变量t的取值范围0≤t≤6,画函数图象的草图如图;③根据题意,结合图象可知,小球在抛物线的顶点时为最大高度。41111解:显然t取顶点的横坐标时,这个函数有最大值,这个最大值即为小球的最大高度.h=30t-5t2(0≤t≤6)30322(5)bta当时,2243045.44(5)acbha有最大值即小球运动的时间是3s时,小球最高,且最大高度是45m.51111一般地,当a0(a0)时,抛物线y=ax2+bx+c的顶点是最低(高)点,也就是说,当x=时,二次函数有最小(大)值。2ba244acba61111用总长为60m的篱笆围城一个矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?lS71111①已知矩形场地的周长是60m,一边长是lm,则另一边长是m,场地面积S=m2.②由一边长l及另一边长30-l都是正数,可列不等式组:.解不等式组得l的范围是.lS总长为60m分析:(30-l)0300ll,l(30-l)0l30何时取最大值呢?81111S=l(30-l)lS总长为60m③根据解析式,可以确定这个函数的图象的开口,对称轴是,顶点坐标是,与横轴的交点坐标是,与纵轴的交点坐标是.向下直线l=15(15,225)(0,0),(30,0)(0,0)91111④根据l的取值范围及③画出函数图象的草图。50100S150200250O-5050l由图象知:点是图象的最高点,即当l=时,S有(选填“大”或“小”)值.(15,225)15最大101111用总长为60m的篱笆围城一个矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?50100S150200250O-5050llS解:60m,m,60-m.2ll矩形场地的周长是一边长为所以另一边长为()场地的面积S=l(30-l)即S=-l2+30l(0l30)30-1522(1)bla因此,当时,22430225.44(1)acbSa有最大值即当l是15m时,场地的面积S最大。111111利用二次函数图象解决最值问题时需要注意哪些问题?121111利用二次函数解决几何图形中的最值问题的要点:1.根据面积公式、周长公式、勾股定理等建立函数关系式;2.确定自变量的取值范围;3.根据开口方向、顶点坐标和自变量的取值范围画草图;4.根据草图求所得函数在自变量的允许范围内的最大值或最小值.1311111.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(如图所示),墙长为18m,这个矩形的长,宽各为多少时,菜园的面积最大,最大面积是多少?解:设矩形的长为xm,面积为ym2,则矩形的宽为m.018,1502xx又>∴0x≤18.21522515mm,,m.22即当矩形的长为、宽各为时菜园的面积最大为22515,.2xy当时有最大值221(15)15.2xyxxx=15-2x141111综合应用2.如图,点E、F、G、H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形,当点E位于何处时,正方形EFGH的面积最小?解:令AB长为1,设DH=x,正方形EFGH的面积为y,则DG=1-x.即当E位于AB中点时,正方形EFGH面积最小.2211114(1)2()(01)222yxxxx11,.22xy当时有最小值151111教学反思本课时重点在于利用二次函数解决图形的最大面积问题,教学过程中注重引导学生通过分析实际问题构造数学几何模型.161111
本文标题:教编版22.3实际问题与二次函数(1)(公开课)
链接地址:https://www.777doc.com/doc-3782687 .html