您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 电子商务 > 第1章 优化设计的基本概念
机械优化设计机械与自动控制学院课程教学要求:作业教学考试交作业或程序时间(根据课程进度)要求互动平时表现(作业):20%(30%)期末考试(开卷):50%计划学时数:32学时使用教材陈秀宁主编.机械优化设计.浙江大学出版社,2005学习参考书[1]孙靖民.机械优化设计.北京:机械工业出版社,2002[2]陈立周,机械优化设计方法,北京:冶金工业出版社,1997[3]刘惟信.机械最优化设计.北京:清华大学出版社,1994课程介绍第一章优化设计的基本概念§1-1绪论§1-2优化设计问题的示例§1-3优化设计的数学模型§1-4优化问题的几何解释和基本解法优化是万物演化的自然选择和必然趋势。优化作为一种观念和意向,人类从很早开始就一直在自觉与不自觉地追求与探索。而优化作为一门学科与技术,则是一切科学与技术所追求的永恒主题,旨在从处理各种事物的一切可能的方案中,寻求最优的方案。优化的原理与方法,在科学的、工程的和社会的实际问题中的应用,便是优化设计。优化设计是在现代计算机广泛应用的基础上发展起来的一项新技术。是根据最优化原理和方法,以人机配合方式或“自动探索”方式,在计算机上进行的半自动或自动设计,以选出在现有工程条件下的最佳设计方案的一种现代设计方法。§1-1绪论1.优化、优化设计和机械优化设计的含义例如,古代人类在生产和生活活动中经过无数次摸索认识到,在使用同样数量和质量材料的条件下,圆截面的容器比其他任何截面的容器能够盛放的谷物都要多,而且容器的强度也最大。几个概念(1)来源:优化一语来自英文Optimization,其本意是寻优的过程;(2)优化过程:是寻找约束空间下给定函数取极大值(以max表示)或极小(以min表示)的过程。(3)优化方法也称数学规划,是用科学方法和手段进行决策及确定最优解的数学;(4)优化设计:根据给定的设计要求和现有的技术条件,应用专业理论和优化方法,在电子计算机上从满足给定的设计要求的许多可行方案中,按照给定的目标自动地选出最优的设计方案。优化是方法计算机是工具机械优化设计就是把机械设计与优化设计理论及方法相结合,借助电子计算机,自动寻找实现预期目标的最优设计方案和最佳设计参数。优化设计流程常规设计流程2.优化设计的发展概况历史上最早记载下来的最优化问题可追溯到古希腊的欧几里得(Euclid,公元前300年左右),他指出:在周长相同的一切矩形中,以正方形的面积为最大。十七、十八世纪微积分的建立给出了求函数极值的一些准则,对最优化的研究提供了某些理论基础。然而,在以后的两个世纪中,最优化技术的进展缓慢,主要考虑了有约束条件的最优化问题,发展了变分法。直到二十世纪40年代初,由于军事上的需要产生了运筹学,并使优化技术首先应用于解决战争中的实际问题,例如轰炸机最佳俯冲轨迹的设计等。50年代末数学规划方法被首次用于结构最优化,并成为优化设计中求优方法的理论基础。数学规划方法是在第二次世界大战期间发展起来的一个新的数学分支,线性规划与非线性规划是其主要内容。近十几年来,最优化设计方法已陆续用到建筑结构、化工、冶金、铁路、航天航空、造船、机床、汽车、自动控制系统、电力系统以及电机、电器等工程设计领域,并取得了显著效果。其中在机械设计方面的应用虽尚处于早期阶段,但也已经取得了丰硕的成果。一般说来,对于工程设计问题,所涉及的因素愈多,问题愈复杂,最优化设计结果所取得的效益就愈大。最优化设计是在数学规划方法的基础上发展起来的,是6O年代初电子计算机引入结构设计领域后逐步形成的一种有效的设计方法。利用这种方法,不仅使设计周期大大缩短,计算精度显著提高,而且可以解决传统设计方法所不能解决的比较复杂的最优化设计问题。大型电子计算机的出现,使最优化方法及其理论蓬勃发展,成为应用数学中的一个重要分支,并在许多科学技术领域中得到应用。第一阶段人类智能优化:与人类史同步,直接凭借人类的直觉或逻辑思维,如黄金分割法、穷举法和瞎子爬山法等。第二阶段数学规划方法优化:从三百多年前牛顿发明微积分算起,电子计算机的出现推动数学规划方法在近五十年来得到迅速发展。第三阶段工程优化:近三十余年来,计算机技术的发展给解决复杂工程优化问题提供了新的可能,非数学领域专家开发了一些工程优化方法,能解决不少传统数学规划方法不能胜任的工程优化问题。在处理多目标工程优化问题中,基于经验和直觉的方法得到了更多的应用。优化过程和方法学研究,尤其是建模策略研究引起重视,开辟了提高工程优化效率的新的途径。第四阶段现代优化方法:如遗传算法、模拟退火算法、蚁群算法、神经网络算法等,并采用专家系统技术实现寻优策略的自动选择和优化过程的自动控制,智能寻优策略迅速发展。机械优化设计应用实例美国波音飞机公司对大型机翼用138个设计变量进行结构优化,使重量减少了三分之一;大型运输舰用10个变量进行优化设计,使成本降低约10%。实践证明,最优化设计是保证产品具有优良的性能,减轻自重或体积,降低产品成本的一种有效设计方法。同时也可使设计者从大量繁琐和重复的计算工作中解脱出来,使之有更多的精力从事创造性的设计,并大大提高设计效率。例如,工厂在安排生产计划时,首先要考虑在现有原材料、设备、人力等资源条件下,如何安排生产,使产品的产值最高,或产生的利润最大;又如,在多级火箭发射过程中,如何控制燃料的燃烧速率,从而用火箭所载的有限燃料使火箭达到最大升空速度;再如,在城市交通管理中,如何控制和引导车辆的流向,尽量减少各个交叉路口的阻塞和等待时间、提高各条道路的车辆通行速度,在现有道路条件下取得最大的道路通行能力。基础:(1)最优化数学理论(2)现代计算技术内容:(1)将工程实际问题数学化;(建立优化设计数学模型)(2)选择最优化计算方法及编程;(3)在计算机上求解数学模型。优化设计是一种现代设计方法,是很好的工具。3.本课程的任务该课程的主要目的和任务:①了解和掌握机械优化设计的基本知识;②初步具有应用机械优化设计的基本理论和基本方法解决简单工程实际问题的能力。§1-2优化设计问题的示例优化设计就是借助最优化数值计算方法与计算机技术,求取工程问题的最优设计方案。优化设计包括:(1)必须将实际问题加以数学描述,形成数学模型;(2)选用适当的一种最优化数值方法和计算程序运算求解。已知:制造一体积为100m3,长度不小于5m,不带上盖的箱盒,试确定箱盒的长x1,宽x2,高x3,使箱盒用料最省。分析:(1)箱盒的表面积的表达式;(2)设计参数确定:长x1,宽x2,高x3;(3)设计约束条件:(a)体积要求;(b)长度要求;x1x2x3箱盒的优化设计数学模型123,,xxx122313min2()Sxxxxxx123123500100xxxxxx设计参数:设计目标:约束条件:某工厂生产A和B两种产品,A产品单位价格为PA万元,B产品单位价格为PB万元。每生产一个单位A产品需消耗煤aC吨,电aE度,人工aL个人日;每生产一个单位B产品需消耗煤bC吨,电bE度,人工bL个人日。现有可利用生产资源煤C吨,电E度,劳动力L个人日,欲找出其最优分配方案,使产值最大。分析:(1)产值的表达式;(2)设计参数确定:A产品xA,B产品xB;(3)设计约束条件:(a)生产资源煤约束;(b)生产资源电约束;(b)生产资源劳动力约束;最大产值生产资源分配问题数学模型,ABxxmaxAABBPPxPxCACBEAEBLALBaxbxCaxbxEaxbxL设计参数:设计目标:约束条件:已知:传动比i,转速n,传动功率P,大小齿轮的材料,设计该齿轮副,使其重量最轻。分析:(1)圆柱齿轮的体积(v)与重量(w)的表达;(2)设计参数确定:模数(m),齿宽(b),齿数(z1);(3)设计约束条件:(a)大齿轮满足弯曲强度要求;(b)小齿轮满足弯曲强度要求;(c)齿轮副满足接触疲劳强度要求;(d)齿宽系数要求;(e)最小齿数要求。直齿圆柱齿轮副的优化设计数学模型1,,mzb2211min[()()]4Wbmzmiz1122111[]0[]0[]01.20170FFFFHHbmzz设计参数:设计目标:约束条件:§1-3优化设计的数学模型1.设计变量一个设计方案可以用一组基本参数的数值来表示,这些基本参数可以是构件尺寸等几何量,也可以是质量等物理量,还可以是应力、变形等表示工作性能的导出量。在设计过程中进行选择并最终必须确定的各项独立的基本参数,称作设计变量,又叫做优化参数。优化设计的数学模型是描述实际优化问题的设计内容、变量关系、有关设计条件和意图的数学表达式,它反映了物理现象各主要因素的内在联系,是进行优化设计的基础。设计变量的全体实际上是一组变量,可用一个列向量表示。设计变量的数目称为优化设计的维数,如n个设计变量,则称为n维设计问题。1212[,,,]Tnnxxxxxxx由n个设计变量为坐标所组成的实空间称作设计空间。一个“设计”,可用设计空间中的一点表示。12,,,nxxx设计变量的数目称为优化设计的维数,如n个设计变量,则称为n维设计问题。按照产品设计变量的取值特点,设计变量可分为连续变量(例如轴径、轮廓尺寸等)和离散变量(例如各种标准规格等)。图1-1设计变量所组成的设计空间(a)二维设计问题(b)三维设计问题只有两个设计变量的二维设计问题可用图1-1(a)所示的平面直角坐标表示;有三个设计变量的三维设计问题可用图1-1(b)所表示的空间直角坐标表示。设计空间的维数表征设计的自由度,设计变量愈多,则设计的自由度愈大、可供选择的方案愈多,设计愈灵活,但难度亦愈大、求解亦愈复杂。小型设计问题:一般含有2—10个设计变量;中型设计问题:10—50个设计变量;大型设计问题:50个以上的设计变量。目前已能解决200个设计变量的大型最优化设计问题。如何选定设计变量?任何一项产品,是众多设计变量标志结构尺寸的综合体。变量越多,可以淋漓尽致地描述产品结构,但会增加建模的难度和造成优化规模过大。所以设计变量时应注意以下几点:(1)抓主要,舍次要。对产品性能和结构影响大的参数可取为设计变量,影响小的可先根据经验取为试探性的常量,有的甚至可以不考虑。(2)根据要解决设计问题的特殊性来选择设计变量。例如,圆柱螺旋拉压弹簧的设计变量有4个,即钢丝直径d,弹簧中径D,工作圈数n和自由高度H。在设计中,将材料的许用剪切应力和剪切模量G等作为设计常量。在给定径向空间内设计弹簧,则可把弹簧中径D作为设计常量。2.约束条件设计空间是所有设计方案的集合,但这些设计方案有些是工程上所不能接受的。如一个设计满足所有对它提出的要求,就称为可行设计。一个可行设计必须满足某些设计限制条件,这些限制条件称作约束条件,简称约束。约束又可按其数学表达形式分成等式约束和不等式约束两种类型:(1)等式约束(2)不等式约束()0hx()0gx显式约束隐式约束约束函数有的可以表示成显式形式,即反映设计变量之间明显的函数关系,有的只能表示成隐式形式,如例中的复杂结构的性能约束函数(变形、应力、频率等),需要通过有限元等方法计算求得。根据约束的性质可以把它们区分成:性能约束——针对性能要求而提出的限制条件称作性能约束。例如,选择某些结构必须满足受力的强度、刚度或稳定性等要求;边界约束——只是对设计变量的取值范围加以限制的约束称作边界约束。例如,允许机床主轴选择的尺寸范围,对轴段长度的限定范围就属于边界约束。图1-2设计空间中的约束面(或约束线)(a)二变量设计空间中的约束线(b)三变量设计空间中的约束面如图1-4上画出了满足两项约束条件g1(X)=x12+x22—16≤O和g2(X)=2—X2≤0的二维设计问题的可行域D,它位于X2=2的上面和圆x12+x22=16的圆弧ABC下面并包括线段AC和圆弧ABC在内。图1-3约束条件规定的可行域D可行域:在设计空间中,满足所有约束条件的所构成的空间。3.目标函数在优化过程中,通过设计变量的不断向F(X)值改善的方向自动调整,最
本文标题:第1章 优化设计的基本概念
链接地址:https://www.777doc.com/doc-3789436 .html