您好,欢迎访问三七文档
Chapter9内生性问题给出三个定义:内生变量(endogenousvariable):由模型内变量所决定的变量。外生变量(exogenousvariable):由模型外变量所决定的变量。前定变量(predeterminedvariable):包括外生变量、外生滞后变量、内生滞后变量。例如:yt=0+1yt-1+0xt+1xt-1+utyt为内生变量;xt为外生变量;yt-1,xt,xt-1为前定变量。•内生性:在回归分析中,干扰项和解释变量相关•回顾:确保估计量具有一致性的条件–随机抽样–满秩–外生•内生性的后果–统计角度而言:OLS(MLE)估计结果有偏且不一致–实践角度而言:经验结果存在多种可能的解释(并非“因果”推断)1.何谓内生性?01122kkyxxx11(,,,,)kyxxx(')+1rankXXk11(,)0[,,,]0kCovXorExxx2.内生性问题的可能来源•遗漏变量–假定真实的经济关系:–实际估计的模型:–如果存在,则所有的估计系数不具有一致性01122+kkwyxxx01122kkyxxxu=+uw(,)0jCovxw•遗漏变量通常源于无法观察的影响因素•考虑影响工资的模型•该模型忽略了人的能力(如果能找到代理变量,如IQ,可以将其加入模型中)•人的能力将影响其受教育的程度01log()wageeducu联立方程(simultaneity,双向因果)结构模型(structuralmodel):把内生变量表述为其他内生变量、前定变量与随机误差项的方程体系。例:如下凯恩斯模型(为简化问题,对数据进行中心化处理,从而不出现截距项)ct=1yt+ut1消费函数,行为方程(behaviorequation)It=1yt+2yt-1+ut2投资函数,行为方程yt=ct+It+Gt国民收入等式,定义方程(definitionalequation)其中,ct消费;yt国民收入;It投资;Gt政府支出。1,1,2称为结构参数。模型中内生变量有三个ct,yt,It。外生变量有一个Gt。内生滞后变量有一个yt-1。Gt,yt-1又称为前定变量。因模型中包括三个内生变量,含有三个方程,所以是一个完整的联立模型。简化型模型(reduced-formequations):把内生变量只表示为前定变量与随机误差项函数的联立模型。仍以凯恩斯模型为例其简化型模型为,ct=11yt-1+12Gt+vt1It=21yt-1+22Gt+vt2yt=31yt-1+32Gt+vt3或tttyIc=323122211211ttGy1+321vvv,其中ct,yt,It为内生变量,yt-1,Gt为前定变量,ij,(i=1,2,3,j=1,2),为简化型参数。用如下矩阵符号表示上式Y=X+v显然结构模型参数与简化型模型参数之间存在函数关系。ct-1yt=ut1It-1yt=2yt-1+ut2-ct-It+yt=Gt用矩阵形式表达111100111tttyIc=100002ttGy1+021ttuu用如下矩阵符号表示上式Y=X+u则Y=-1X+-1u=-1323122211211=111111111111111100002=11111)1(2112121其中,A-1=AA)(adj。A=111100111=111。adj(A)=11111111111=11111111111。的伴随矩阵是的代数余子式组成的矩阵的转置。v=-1u321vvv=111111111111111021ttuu测量误差•因变量的测量误差–真实的经济关系–可估计的模型01122kkyxxx01122kkyxxxu:=-yywyy无法直接观测,其代理变量为,两者间误差为=+uw测量误差•自变量的测量误差–真实的经济关系–可估计的模型01122kkyxxx01122kkyxxxu**:=-kkkkxxwxx无法直接观测,其代理变量为,两者间误差为=-uw3.内生性的检验•Hausman检验–参数的两种估计量和,在原假设和备择假设下都是一致估计量,而仅在原假设下是一致估计量–原假设:变量是外生的–备择假设:变量具有内生性–2SLS估计量–OLS估计量ˆˆˆ0112132yxzzu1011223344xzzzzvˆv0112132ˆ+yxzzverror案例1:美国货币需求函数(BASICS.WF1)因变量M1:MONEYSTOCK(CURR,TRAV.CKS,DEMDEP,OTHERCK'ABLEDEP)(BIL$,SA)自变量IP:INDUSTRIALPRODUCTION:TOTALINDEX(1987=100,SA)自变量PPI:PRODUCERPRICEINDEX:FINISHEDGOODS(82=100,NSA)自变量TB3:INTERESTRATE:U.S.TREASURYBILLS,AUCTIONAVG,3-MO.(%PERANN,NSA)外生变量URATE:UNEMPLOYMENTRATE:ALLWORKERS,16YEARS&OVER(%,SA)外生变量AAA:BONDYIELD:MOODY'SAAACORPORATE(%PERANNUM)DependentVariable:LOG(M1)Method:LeastSquaresSample(adjusted):1959M021995M04Includedobservations:435afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.C-0.0226990.004443-5.1085280.0000LOG(IP)0.0116300.0025854.4997080.0000DLOG(PPI)-0.0248860.042754-0.5820710.5608TB3-0.0003669.91E-05-3.6926750.0003LOG(M1(-1))0.9965780.001210823.44400.0000R-squared0.999953Meandependentvar5.844581AdjustedR-squared0.999953S.D.dependentvar0.670596S.E.ofregression0.004601Akaikeinfocriterion-7.913714Sumsquaredresid0.009102Schwarzcriterion-7.866871Loglikelihood1726.233Hannan-Quinncriter.-7.895226F-statistic2304897.Durbin-Watsonstat1.265920Prob(F-statistic)0.000000货币需求函数的初始估计结果为检验IP是否具有内生性,估计以IP为因变量的简约式模型,并提取残差vDependentVariable:LOG(IP)Method:LeastSquaresDate:12/01/12Time:19:14Sample(adjusted):1959M021995M04Includedobservations:435afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.C1.8628850.04192144.437460.0000LOG(M1(-1))0.4078650.00808950.423350.0000DLOG(PPI)4.2371620.6469946.5489940.0000TB3-0.0121600.003499-3.4751870.0006URATE-0.0501980.003693-13.591690.0000AAA0.0505190.00488910.333420.0000R-squared0.954028Meandependentvar4.285978AdjustedR-squared0.953492S.D.dependentvar0.332940S.E.ofregression0.071801Akaikeinfocriterion-2.416138Sumsquaredresid2.211663Schwarzcriterion-2.359926Loglikelihood531.5101Hannan-Quinncriter.-2.393952F-statistic1780.537Durbin-Watsonstat0.197866Prob(F-statistic)0.000000DependentVariable:LOG(M1)Method:LeastSquaresSample(adjusted):1959M021995M04Includedobservations:435afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.C-0.0071450.007473-0.9561580.3395LOG(IP)0.0015600.0046720.3338320.7387DLOG(PPI)0.0202330.0459350.4404650.6598TB3-0.0001850.000121-1.5277750.1273LOG(M1(-1))1.0010930.002123471.48940.0000V0.0144280.0055932.5798260.0102R-squared0.999954Meandependentvar5.844581AdjustedR-squared0.999954S.D.dependentvar0.670596S.E.ofregression0.004571Akaikeinfocriterion-7.924511Sumsquaredresid0.008963Schwarzcriterion-7.868300Loglikelihood1729.581Hannan-Quinncriter.-7.902326F-statistic1868171.Durbin-Watsonstat1.307838Prob(F-statistic)0.000000显然,IP具有内生性4.内生性的处理与参数估计•工具变量(instrumentalvariable)•两阶段最小二乘(2SLS)•广义矩估计(GMM)工具变量01122cov(,)0kkkyxxxx01122-1-1+kkkxxxxzv0:0H•如果存在多个工具变量•如何检验?01122-1-11122++++kkkmmxxxxzzzv一个简单的IV估计量•一元模型y=b0+b1x+u,满足假定条件•Cov(z,y)=b1Cov(z,x)+Cov(z,u),•b1=Cov(z,y)/Cov(z,x)•b1的IV估计量为xxzzyyzziiii1ˆIV估
本文标题:内生性问题
链接地址:https://www.777doc.com/doc-3813245 .html