您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 传感器原理及工程应用(第三版)第11章微波传感器
第11章微波传感器第11章微波传感器11.1微波概述11.2微波传感器的原理和组成11.3微波传感器的应用第11章微波传感器11.1微波概述微波是波长为0.1m~1mm的电磁波,对应的波段频率范围为300MHz~3000GHz。在实际应用中为了方便起见,把微波波段细分为:分米波段(频率从3003000MHz)、厘米波段(频率从3~30GHz)、毫米波段(频率从30~300GHz)及亚毫米波段(频率从300~3000GHz)。微波有电磁波的性质,但它又不同于普通无线电波和光波,是一种相对波长较长的电磁波。微波波段之所以要从射频频谱中分离出来单独研究,是由于微波波段有着不同于其他波段的重要特点:第11章微波传感器(1)似光性和似声性微波波段的波长与无线电设备的线长度及地球上的一般物体(如飞机、舰船、火箭、导弹、建筑物等)的尺寸相当或小得多,这样,当微波照射到这些物体上时,将产生显著的反、折射,就与光线的反、折射一样。同时,微波传播的特性也和几何光学相似,能像光线一样直线传播,容易集中,即具有似光性。这样,利用微波就可以制作方向性极好、体积小的天线设备,用于接收地面上或宇宙空间中各种物体反射回来的微弱信号,从而确定该物体的方位与距离,这是雷达和导航技术的基础。微波的波长与无线电设备尺寸相当的特点,使微波又体现出与声波相似的特征,即具有似声性。例如,微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似于声学喇叭、萧和笛;微波谐振腔类似于声学共鸣箱等。第11章微波传感器(2)分析方法的独特性由于微波的频率很高,波长很短,使得在低频电路中被忽略了的一些现象和效应(例如趋肤效应、辐射效应、相位滞后现象等)在微波波段则不可忽略。这样,低频电路中常用的集中参数元件电阻、电感、电容已不适用,电压、电流在微波波段甚至失去了惟一性意义。因此用它们已无法对微波传输系统进行完全描述,而要建立一套新的能够描述这些现象和效应的理论方法——电磁场理论的场与波传输的分析方法。第11章微波传感器(3)共度性电子在真空管内的渡越时间(10-9秒左右)与微波的振荡周期(10-9~10-15秒)相当的这一特性称共度性,利用该特性可以做成各种微波电真空器件,得到微波振荡源。第11章微波传感器(4)穿透性微波照射于介质物体时,能深入物质内部的特点称为穿透性,例如微波是射频波谱中惟一能穿透电离层的电磁波(除光波外),因而成为人类探测外层空间的“宇宙窗口”;微波可以穿透云雾、雨、植被、积雪和地表层,具有全天候和全天时的工作能力,成为遥感技术的重要波段;微波能够穿透生物体,成为医学透热疗法的重要手段;毫米波还能穿透等离子体,使远程导弹和航天器重返大气层,是实现通信和末端制导的重要手段。第11章微波传感器(5)信息性微波波段可载的信息容量是非常巨大的,即便是在很小的相对带宽,其可用的频带也是很宽的,可达数百甚至上千兆赫兹。所以现代多路通信系统,包括卫星通信系统,几乎无例外地工作在微波波段。此外,微波信号还可提供相位信息、极化信息、多普勒频率信息,这在目标探测、遥感、目标特征分析等应用中是十分重要的。第11章微波传感器(6)非电离性微波量子能量不够大,因而不会改变物质分子的内部结构或破坏分子的化学键,所以微波和物体之间的作用是非电离的。而由物理学可知,分子、原子和原子核在外加电磁场的周期力作用下所呈现的许多共振现象都发生在微波范围,因此微波为探索物质的内部结构和其基本特性提供了有效的研究手段。第11章微波传感器11.2微波传感器的原理和组成11.2.1微波传感器的分类微波传感器是利用微波特性来检测某些物理量的器件或装置。由发射天线发出微波,此波遇到被测物体时将被吸收或反射,使微波功率发生变化。若利用接收天线,接收到通过被测物体或由被测物体反射回来的微波,并将它转换为电信号,再经过信号调理电路,即可以显示出被测量,实现了微波检测。根据微波传感器的原理,微波传感器可以分为反射式和遮断式两类。第11章微波传感器1.反射式微波传感器反射式微波传感器是通过检测被测物反射回来的微波功率或经过的时间间隔来测量被测量的。通常它可以测量物体的位置、位移、厚度等参数。2.遮断式微波传感器遮断式微波传感器是通过检测接收天线收到的微波功率大小来判断发射天线与接收天线之间有无被测物体或被测物体的厚度、含水量等参数的。第11章微波传感器11.2.2微波传感器通常由微波发射器(即微波振荡器)、微波天线及微波检测器三部分组成。1.微波振荡器及微波天线微波振荡器是产生微波的装置。由于微波波长很短,即频率很高(300MHz~300GHz),要求振荡回路中具有非常微小的电感与电容,因此不能用普通的电子管与晶体管构成微波振荡器。构成微波振荡器的器件有调速管、磁控管或某些固态器件,小型微波振荡器也可以采用体效应管。第11章微波传感器由微波振荡器产生的振荡信号需要用波导管(管长为10cm以上,可用同轴电缆)传输,并通过天线发射出去。为了使发射的微波具有尖锐的方向性,天线要具有特殊的结构。常用的天线如图11-1所示,其中有喇叭形天线(图(a)、(b))、抛物面天线(图(c)、(d))、介质天线与隙缝天线等。喇叭形天线结构简单,制造方便,可以看作是波导管的延续。喇叭形天线在波导管与空间之间起匹配作用,可以获得最大能量输出。抛物面天线使微波发射方向性得到改善。第11章微波传感器图11-1常用的微波天线(a)扇形喇叭天线;(b)圆锥形喇叭天线;(c)旋转抛物面天线;(d)抛物柱面天线第11章微波传感器2.微波检测器电磁波作为空间的微小电场变动而传播,所以使用电流-电压特性呈现非线性的电子元件作为探测它的敏感探头。与其它传感器相比,敏感探头在其工作频率范围内必须有足够快的响应速度。作为非线性的电子元件,在几兆赫以下的频率通常可用半导体PN结,而对于频率比较高的可使用肖特基结。在灵敏度特性要求特别高的情况下可使用超导材料的约瑟夫逊结检测器、SIS检测器等超导隧道结元件,而在接近光的频率区域可使用由金属-氧化物-金属构成的隧道结元件。第11章微波传感器微波的检测方法有两种,一种是将微波变化为电流的视频变化方式,另一种是与本机振荡器并用而变化为频率比微波低的外差法。微波检测器性能参数有:频率范围、灵敏度-波长特性、检测面积、FOV(视角)、输入耦合率、电压灵敏度、输出阻抗、响应时间常数、噪声特性、极化灵敏度、工作温度、可靠性、温度特性、耐环境性等。第11章微波传感器11.2.3微波传感器的特点微波传感器具有如下特点:①有极宽的频谱(波长=1.0mm~1.0m)可供选用,可根据被测对象的特点选择不同的测量频率;②在烟雾、粉尘、水汽、化学气氛以及高、低温环境中对检测信号的传播影响极小,因此可以在恶劣环境下工作;③介质对微波的吸收与介质的介电常数成比例,水对微波的吸收作用最强;④时间常数小,反应速度快,可以进行动态检测与实时处理,便于自动控制;第11章微波传感器⑤测量信号本身就是电信号,无须进行非电量的转换,从而简化了传感器与微处理器间的接口,便于实现遥测和遥控;⑥微波无显著辐射公害。微波传感器存在的主要问题是零点漂移和标定尚未得到很好的解决。其次,使用时外界环境因素影响较多,如温度、气压、取样位置等。第11章微波传感器11.3微波传感器的应用图11-2微波液位计被测液面高度微波功率接收天线发射天线第11章微波传感器11.3.2水分子是极性分子,常态下成偶极子形式杂乱无章地分布着。在外电场作用下,偶极子会形成定向排列。当微波场中有水分子时,偶极子受场的作用而反复取向,不断从电场中得到能量(储能),又不断释放能量(放能),前者表现为微波信号的相移,后者表现为微波衰减。这个特性可用水分子自身介电常数ε来表征,即ε=ε′+αε″(11-1)式中:ε′——储能的度量;ε″——α——常数。第11章微波传感器ε′与ε″不仅与材料有关,还与测试信号频率有关,所以极性分子均有此特性。一般干燥的物体,如木材、皮革、谷物、纸张、塑料等,其ε′在1~5范围内,而水的ε′则高达64,因此如果材料中含有少量水分子时,其复合ε′将显著上升,ε″也有类似性质。使用微波传感器,测量干燥物体与含一定水分的潮湿物体所引起的微波信号的相移与衰减量,就可以换算出物体的含水量。第11章微波传感器图为测量酒精含水量的仪器框图,图中,MS产生的微波功率经分功率器分成两路,再经衰减器A1、A2分别注入到两个完全相同的转换器T1、T2中。其中,T1放置无水酒精,T2放置被测样品。相位与衰减测定仪(PT、AT)分别反复接通两电路(T1和T2)输出,自动记录与显示它们之间的相位差与衰减差,从而确定样品酒精的含水量。微波功率发生器衰减器放置无水酒精放置被测酒精相位差与衰减差被测酒精含水量第11章微波传感器11.3.3微波测厚仪微波测厚仪是利用微波在传播过程中遇到被测物体金属表面被反射,且反射波的波长与速度都不变的特性进行测厚的。微波测厚仪原理如图11-4所示,在被测金属物体上下两表面各安装一个终端器。微波信号源发出的微波,经过环行器A、上传输波导管传输到上终端器,由上终端器发射到被测物体上表面上,微波在被测物体上表面全反射后又回到上终端器,再经过传输导管、环行器A、下传输波导管传输到下终端器。第11章微波传感器图11-4微波测厚仪原理图传导管参考臂由下终端器发射到被测物体下表面的微波,经全反射后又回到下终端器,再经过传输导管回到环行器A。因此被测物体的厚度与微波传输过程中的行程长度有密切关系,当被测物体厚度增加时,微波传输的行程长度便减小。第11章微波传感器一般情况下,微波传输的行程长度的变化非常微小。为了精确地测量出这一微小变化,通常采用微波自动平衡电桥法,前面讨论的微波传输行程作为测量臂,而完全模拟测量臂微波的传输行程设置一个参考臂(图11-4右部)。若测量臂与参考臂行程完全相同,则反相叠加的微波经过检波器C检波后,输出为零。若两臂行程长度不同,两路微波叠加后不能相互抵消,经检波器后便有不平衡信号输出。此不平衡差值信号经放大后控制可逆电机旋转,带动补偿短路器产生位移,改变补偿短路器的长度,直到两臂行程长度完全相同,放大器输出为零,可逆电机停止转动为止。第11章微波传感器补偿短路器的位移与被测物厚度增加量之间的关系式为ΔS=LB-(LA-ΔLA)=LB-(LA-Δh)=Δh式中:LA——电桥平衡时测量臂行程长度;LB——电桥平衡时参考臂行程长度;ΔLA——被测物厚度变化Δh后引起的测量臂行程长度变化值;Δh——被测物厚度变化;ΔS——补偿短路器位移值。由上式可知,补偿短路器位移值ΔS即为被测物厚度变化值Δh。第11章微波传感器11.3.4微波辐射计(温度传感器)任何物体,当它的温度高于环境温度时,都能够向外辐射热能。微波辐射计能测量对象的温度。普朗克公式在微波领域可近似为402),(CkTTL(11-2)就微波辐射计而言,它以一定的频带宽检测来自物体的微波辐射辉度L(λ,T)。由于此电信号输出正比于物体的发射率ε(λ,Τ)和绝对温度的乘积,因此微波辐射计指示的温度不是物体的真实温度,而是辉度温度ε(λ,Τ)Τ。第11章微波传感器图11-5微波温度传感器原理框图被测温度环行器基准温度带通滤波器低噪声放大器本机振荡器混频器中频放大器第11章微波传感器微波温度传感器最有价值的应用是微波遥测,将它装在航天器上,可以遥测大气对流层的状况,可以进行大地测量与探矿,可以遥测水质污染程度,确定水域范围,判断植物品种等。第11章微波传感器11.3.5微波测定移动物体的速度和距离微波测定移动物体的速度和距离是利用雷达能动地将电波发射到对象物,并接受返回的反射波的能动型传感器。若对在距离发射天线为r的位置上以相对速度v运动的物体发射微波,则由于多卜勒效应,反射波的频率fr发生偏移,如下式所示:fr=f0+fD式中fDcvffD02(11-4)(11-3)第11章微波传感器当物体靠近靶时,多卜勒频率fD为正;远离靶时,fD为负。输入接收机的反射波的电压ue可用下式表示:crftff
本文标题:传感器原理及工程应用(第三版)第11章微波传感器
链接地址:https://www.777doc.com/doc-3824927 .html