您好,欢迎访问三七文档
GroupDominantStrategies(ExtendedAbstract)OlaRozenfeld1andMosheTennenholtz21ola.rozenfeld@gmail.com2moshet@ie.technion.ac.ilTechnion–IsraelInstituteofTechnology,Haifa32000,IsraelAbstract.Weintroduceanewsolutionconceptforcompleteinformationgames,whichwecallequilibriumingroupdominantstrategies.Thisconceptisthestrongestofallknownsolutionconceptssofar,sinceitencompassesboththeideasbe-hindtheconceptsofdominantstrategiesandstrongequilibrium.Becauseofitsstrength,asolutioningroupdominantstrategiesdoesnotexistinanyinterest-inggame;however,asweshow,suchsolutionscanbeachievedinvariousrichsettingswiththeuseofmediators.1IntroductionAfinitegameinstrategicformisatuple =hN;fAigi2N;fuigi2Niwhere:–N=f1;:::;ngisafinitesetofplayers.–Foreachplayeri2N,Aiisafinitenon-emptysetofactions(orstrategies,weusethetermsinterchangeably)availabletoplayeri.–ForSN,ASdenotesQi2SAi,andA SdenotesQi2NnSAi.ANisdenotedbyA.–Foreachplayeri2N,ui:A!isautilityfunction,whichrepresentsthe“contentment”oftheplayerwitheachspecificstrategyprofile.–Leta2A.Wewillsometimeswriteaas(ai;a i)fori2Nandas(aS;a S)forSN.Oneofthemostbasicquestionsofgametheoryis:givenagameinstrategicform,whatisthesolutionofthegame?Basically,bya“solution”wemeanastablestrategyprofilewhichcanbeproposedtoallagents,inasensethatnorationalagentwouldwanttodeviatefromit.Manysolutionconceptsforgameshavebeenstudied,differingmainlybytheassumptionsthatarationalagentwouldhavetomakeabouttherationalityofotheragents.Forexample,probablythemostwellknownsolutionconceptforgamesistheNashequilibrium:Aprofileofactionsa2AisaNashequilibrium(NE)if8i2Nai2bri(a i)Here,bri(a i)fori2N,a i2A idenotesargmaxai2Aifui(ai;a i)g(thesetofbestresponsesofitoa i).TherearetwobasicproblemswiththeNashequilibriumasasolutioncon-ceptforgames:Problem1:ANEguaranteesabsenceofprofitabledeviationstoaplayeronlyinthecasethatalltheotherplayersplayaccordingtothesuggestedprofile;inthecasewhereevenoneoftheotherplayersdeviates,wehavenosuchguaran-tees.So,theassumptionthatthisconceptrequiresabouttherationalityofotherplayersis:alltheotherplayerswillsticktotheirprescribedstrategies.Butwhyshouldarationalplayermakethatassumption?Thefollowingstabilityconcepttakesthisproblemintoaccount:Aprofileofactionsa2Aisanequilibriuminweaklydominantstrategiesif8i2N;b i2A iai2bri(b i)TheabovedefinitionstrengthenstheconceptofNEbytakingcareoftheaforementionedproblem:nounilateraldeviationcaneverbebeneficial,nomat-terwhatotherplayersdo;inotherwords,itrequiresnoassumptionsontherationalityofotherplayers.Problem2:ANEdoesnottakeintoaccountjointdeviationsbycoalitionsofplayers.Weusuallyassumethatanindividualwilldeviatefromaprofileifshehasanavailablestrategythatstrictlyincreasesherincome.Insomesettingsitwouldbenaturaltoassumealsothatagroupofindividualswilldeviateiftheyhaveanavailablejointstrategythatstrictlyincreasestheincomeofeachgroupmember.Forexample,considerthefamousPrisoner’sDilemmagame:CDC4,40,6D6,01,1Thestrategyprofile(D;D)isaNEandevenanequilibriuminweaklydom-inantstrategies;however,itisnotstableinthesensethatifbothplayersdeviateto(C;C),theincomeofeachoneofthemwillincrease.Thefollowingstabilityconceptby(Aumann,1959)dealswiththisproblem:Aprofileofactionsa2Aisastrongequilibrium(SE)if8SNaS2brS(a S)Here,theconceptofbestresponsestrategyisextendedtomultipleplayersasfollows:forSNanda S2A S,brS(a S)denotesthesetofbestresponsesofStoa S:brS(a S)=faS2ASj8bS2AS9i2Sui(bS;a S)ui(aS;a S)gTheconceptofstrongequilibriumindeedtakescareofProblem2;how-ever,itagaindoesnottakeProblem1intoaccount.Whatwewouldideallyliketohaveisasolutionconceptthathasneitheroftheseproblems:wewouldliketoassumethatplayersareabletocooperateformutualbenefit,andontheotherhandwewouldalsoliketoassumenothingabouttheactionsoftheotherplayers.Theserequirementsmayseemconflicting.Notethatsimplysayingthatweareinterestedinaprofilea2AthatisbothaSEandanequilibriuminweaklydominantstrategiesisnotenough:forgameswithmorethan2players,wewouldhavenoguaranteesabouttheabsenceofjointdeviationsforplayers1and2,inthecasethatplayer3deviated.Thisbringsustothestabilityconceptthatwewishtopresent:aprofileofactionsa2Aisanequilibriumingroup(weakly)dominantstrategies(GDS)if8SN;b S2A SaS2brS(b S)ExistenceofaGDSimplies,foreachplayer,thatnomatterwhattheotherplayerschoose,andnomatterwithwhomcansheuniteinmakingherdecision,theywillnotfindajointstrategythatwillbebettertoallofthemthantheproposedone.Andthus,ifaGDSexistsinagivengame,wecansafelydeclareittobethesolutionofthegame.However,aGDSdoesnotexistinanygamethathaseverbeenasubjectofinterest.Thisisnotsurprising,sincetheconceptissostrongthatitsmereexistencerendersanygamenotinteresting.Forthisreason,theconceptwasneverasubjectofexplorationincompleteinformationgames.Inincompleteinformationgamestheconceptisknownunderthenameofgroupstrategyproofnessandiswidelystudied,becauseinsomecasessuchsolutionscanbeindeedimplementedbymechanismdesign.However,thewholeapproachofmechanismdesignisnotapplicabletocompleteinformationgames–althoughwewouldindeedwanttoassumetheexistenceofaninterestedparty,wedon’twanttogiveitthepowertodesignthegame.Aninter
本文标题:Group Dominant Strategies (Extended Abstract)
链接地址:https://www.777doc.com/doc-3851313 .html