您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 离散型随机变量的方法
2.3.1离散型随机变量的均值人教A版选修2-3第二章对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.1、某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少?2104332221111X把环数看成随机变量的概率分布列:X1234P10410310210121014102310321041X权数加权平均2、某商场要将单价分别为18元/kg,24元/kg,36元/kg的3种糖果按3:2:1的比例混合销售,如何对混合糖果定价才合理?X182436P把3种糖果的价格看成随机变量的概率分布列:636261)/(23613631242118kgX元一、离散型随机变量取值的平均值数学期望一般地,若离散型随机变量X的概率分布为:nniipxpxpxpxXE2211)(则称为随机变量X的均值或数学期望。它反映了离散型随机变量取值的平均水平。P1xix2x······1p2pip······nxnpX设Y=aX+b,其中a,b为常数,则Y也是随机变量.(1)Y的分布列是什么?(2)E(Y)=?思考:P1xix2x······1p2pip······nxnpXnniipxpxpxpxXE2211)(P1xix2x······1p2pip······nxnpXP1xix2x······1p2pip······nxnpXYbax1baxibax2······baxnnnpbaxpbaxpbaxYE)()()()(2211)()(212211nnnpppbpxpxpxabXaE)(一、离散型随机变量取值的平均值数学期望1122()iinnEXxpxpxpxpP1xix2x······1p2pip······nxnpX二、数学期望的性质()()EaXbaEXb要点离散型随机变量均值的性质应用求均值的关键是求出分布列,只要求出随机变量的分布列,就可以套用均值的公式求解,对于aX+b型随机变量的均值,可以利用均值的性质求解,当然也可以先求出aX+b的分布列,再用定义求解.已知随机变量X的分布列如下:X-2-1012P141315m120(1)求m的值;(2)求E(X);(3)若Y=2X-3,求E(Y).【思路启迪】解答本题可先由分布列的性质求出m的值,然后由随机变量的均值计算公式求出相应的期望值,而对于(3)可以直接利用公式E(Y)=E(2X-3)=2E(X)-3,也可以先写出Y的分布列,再求E(Y).【解】(1)由随机变量分布列的性质,得14+13+15+m+120=1,解得m=16.(2)E(X)=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)方法一:由公式E(aX+b)=aE(X)+b,得E(Y)=E(2X-3)=2E(X)-3=2×-1730-3=-6215.方法二:由于Y=2X-3,所以Y的分布列如下:Y-7-5-3-11P14131516120所以E(Y)=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215.若给出的随机变量ξ与X的关系为ξ=aX+b,a,b为常数.一般思路是先求出E(X),再利用公式E(aX+b)=aE(X)+b求E(ξ).也可以利用ξ的分布列得到η的分布列,关键由ξ的取值计算η的取值,对应的概率相等,再由定义法求得E(η).1、随机变量ξ的分布列是ξ135P0.50.30.2(1)则E(ξ)=.2、随机变量ξ的分布列是2.4(2)若η=2ξ+1,则E(η)=.5.8ξ47910P0.3ab0.2E(ξ)=7.5,则a=b=.0.40.1例1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球1次的得分X的均值是多少?一般地,如果随机变量X服从两点分布,X10Pp1-p则pppEX)1(01小结:与两点分布、二项分布有关的均值例2.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,他连续罚球3次;(1)求他得到的分数X的分布列;(2)求X的期望。X0123P33.0解:(1)X~B(3,0.7)2133.07.0C3.07.0223C37.0(2)31222333()00.310.70.320.70.330.7EXCC1.2)(XE7.03一般地,如果随机变量X服从二项分布,即X~B(n,p),则npXE)(小结:基础训练:一个袋子里装有大小相同的3个红球和2个黄球,从中有放回地取5次,则取到红球次数的数学期望是.3一次英语单元测验由20个选择题构成,每个选择题有4个选项,其中有且只有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分,学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选项中随机地选择一个。求学生甲和乙在这次英语单元测验中的成绩的期望。问题思考1:随机变量的均值与样本的平均值有何区别?提示:随机变量的均值是一个常数,而样本的平均值是一个随机变量,它是变化的,它依赖于所抽取的样本,但随着样本容量的增加,样本的平均值越来越接近于总体平均值.问题思考2:若c为常数,则E(c)为何值?提示:由离散型随机变量的均值的性质E(aX+b)=aE(X)+b可知,若a=0,则E(b)=b,即若c为常数,则E(c)=c.
本文标题:离散型随机变量的方法
链接地址:https://www.777doc.com/doc-3856460 .html