您好,欢迎访问三七文档
2013-2014学年度永城一高第一学期高二(1)部数学巩固练习(理)-1-选修2-21.3.2函数的极值与导数一、选择题1.已知函数f(x)在点x0处连续,下列命题中,正确的是()A.导数为零的点一定是极值点B.如果在点x0附近的左侧f′(x)0,右侧f′(x)0,那么f(x0)是极小值C.如果在点x0附近的左侧f′(x)0,右侧f′(x)0,那么f(x0)是极大值D.如果在点x0附近的左侧f′(x)0,右侧f′(x)0,那么f(x0)是极大值2.函数y=1+3x-3x有()A.极小值-2,极大值2B.极小值-2,极大值3C.极小值-1,极大值1D.极小值-1,极大值33.设x0为f(x)的极值点,则下列说法正确的是()A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为04.对于可导函数,有一点两侧的导数值异号是这一点为极值的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.对于函数f(x)=x3-3x2,给出命题:①f(x)是增函数,无极值;②f(x)是减函数,无极值;2013-2014学年度永城一高第一学期高二(1)部数学巩固练习(理)-2-③f(x)的递增区间为(-∞,0),(2,+∞),递减区间为(0,2);④f(0)=0是极大值,f(2)=-4是极小值.其中正确的命题有()A.1个B.2个C.3个D.4个6.函数f(x)=x+1x的极值情况是()A.当x=1时,极小值为2,但无极大值B.当x=-1时,极大值为-2,但无极小值C.当x=-1时,极小值为-2;当x=1时,极大值为2D.当x=-1时,极大值为-2;当x=1时,极小值为27.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个8.已知函数y=x-ln(1+x2),则函数y的极值情况是()A.有极小值B.有极大值C.既有极大值又有极小值D.无极值9.已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则函数f(x)的极值是()A.极大值为427,极小值为0B.极大值为0,极小值为427C.极大值为0,极小值为-427D.极大值为-427,极小值为010.下列函数中,x=0是极值点的是()A.y=-x3B.y=cos2xC.y=tanx-xD.y=1x2013-2014学年度永城一高第一学期高二(1)部数学巩固练习(理)-3-二、填空题11.函数y=2xx2+1的极大值为______,极小值为______.12.函数y=x3-6x+a的极大值为____________,极小值为____________.13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a=______,b=________.14.已知函数f(x)=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.三、解答题15.已知函数f(x)=x3-3x2-9x+11.(1)写出函数f(x)的递减区间;(2)讨论函数f(x)的极大值或极小值,如有试写出极值.16.设函数f(x)=ax3+bx2+cx,在x=1和x=-1处有极值,且f(1)=-1,求a、b、c的值,并求出相应的极值.2013-2014学年度永城一高第一学期高二(1)部数学巩固练习(理)-4-17.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.18.设函数f(x)=a3x3+bx2+cx+d(a0),且方程f′(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.2013-2014学年度永城一高第一学期高二(1)部数学巩固练习(理)-5-参考答案1.[答案]C[解析]导数为0的点不一定是极值点,例如f(x)=x3,f′(x)=3x2,f′(0)=0,但x=0不是f(x)的极值点,故A错;由极值的定义可知C正确,故应选C.2.[答案]D[解析]y′=3-3x2=3(1-x)(1+x)令y′=0,解得x1=-1,x2=1当x-1时,y′0,函数y=1+3x-x3是减函数,当-1x1时,y′0,函数y=1+3x-x3是增函数,当x1时,y′0,函数y=1+3x-x3是减函数,∴当x=-1时,函数有极小值,y极小=-1.当x=1时,函数有极大值,y极大=3.3.[答案]C[解析]如:y=|x|,在x=0时取得极小值,但f′(0)不存在.4.[答案]C[解析]只有这一点导数值为0,且两侧导数值异号才是充要条件.5.[答案]B[解析]f′(x)=3x2-6x=3x(x-2),令f′(x)0,得x2或x0,令f′(x)0,得0x2,∴①②错误.6.[答案]D[解析]f′(x)=1-1x2,令f′(x)=0,得x=±1,函数f(x)在区间(-∞,-1)和(1,+∞)上单调递增,在(-1,0)和(0,1)上单调递减,∴当x=-1时,取极大值-2,当x=1时,取极小值2.7.[答案]A[解析]由f′(x)的图象可知,函数f(x)在区间(a,b)内,先增,再减,再增,最后再减,故函数f(x)在区间(a,b)内只有一个极小值点.8.[答案]D[解析]∵y′=1-11+x2(x2+1)′=1-2xx2+1=(x-1)2x2+1令y′=0得x=1,当x1时,y′0,当x1时,y′0,∴函数无极值,故应选D.9.[答案]A[解析]由题意得,f(1)=0,∴p+q=1①f′(1)=0,∴2p+q=3②由①②得p=2,q=-1.∴f(x)=x3-2x2+x,f′(x)=3x2-4x+1=(3x-1)(x-1),令f′(x)=0,得x=13或x=1,极大值f13=427,极小值f(1)=0.10.[答案]B2013-2014学年度永城一高第一学期高二(1)部数学巩固练习(理)-6-[解析]y=cos2x=1+cos2x2,y′=-sin2x,x=0是y′=0的根且在x=0附近,y′左正右负,∴x=0是函数的极大值点.二、填空题:11.[答案]1-1[解析]y′=2(1+x)(1-x)(x2+1)2,令y′0得-1x1,令y′0得x1或x-1,∴当x=-1时,取极小值-1,当x=1时,取极大值1.12.[答案]a+42a-42[解析]y′=3x2-6=3(x+2)(x-2),令y′0,得x2或x-2,令y′0,得-2x2,∴当x=-2时取极大值a+42,当x=2时取极小值a-42.13.[答案]-3-9[解析]y′=3x2+2ax+b,方程y′=0有根-1及3,由韦达定理应有14.[答案](-2,2)[解析]令f′(x)=3x2-3=0得x=±1,可得极大值为f(-1)=2,极小值为f(1)=-2,y=f(x)的大致图象如图观察图象得-2a2时恰有三个不同的公共点.三、解答题:15.[解析]f′(x)=3x2-6x-9=3(x+1)(x-3),令f′(x)=0,得x1=-1,x2=3.x变化时,f′(x)的符号变化情况及f(x)的增减性如下表所示:x(-∞,-1)-1(-1,3)3(3,+∞)f′(x)+0-0+f(x)增极大值f(-1)减极小值f(3)增(1)由表可得函数的递减区间为(-1,3);(2)由表可得,当x=-1时,函数有极大值为f(-1)=16;当x=3时,函数有极小值为f(3)=-16.16.[解析]f′(x)=3ax2+2bx+c.2013-2014学年度永城一高第一学期高二(1)部数学巩固练习(理)-7-∵x=±1是函数的极值点,∴-1、1是方程f′(x)=0的根,即有又f(1)=-1,则有a+b+c=-1,此时函数的表达式为f(x)=12x3-32x.∴f′(x)=32x2-32.令f′(x)=0,得x=±1.当x变化时,f′(x),f(x)变化情况如下表:x(-∞,-1)-1(-1,1)1(1,+∞)f′(x)+0-0+f(x)极大值1极小值-1由上表可以看出,当x=-1时,函数有极大值1;当x=1时,函数有极小值-1.17.[解析](1)f′(x)=3ax2+2bx-3,依题意,f′(1)=f′(-1)=0,即解得a=1,b=0.∴f(x)=x3-3x,f′(x)=3x2-3=3(x-1)(x+1).令f′(x)=0,得x1=-1,x2=1.若x∈(-∞,-1)∪(1,+∞),则f′(x)>0,故f(x)在(-∞,-1)上是增函数,f(x)在(1,+∞)上是增函数.若x∈(-1,1),则f′(x)<0,故f(x)在(-1,1)上是减函数.∴f(-1)=2是极大值;f(1)=-2是极小值.(2)曲线方程为y=x3-3x.点A(0,16)不在曲线上.设切点为M(x0,y0),则点M的坐标满足y0=x30-3x0.∵f′(x0)=3(x20-1),故切线的方程为y-y0=3(x20-1)(x-x0).注意到点A(0,16)在切线上,有16-(x30-3x0)=3(x20-1)(0-x0).化简得x30=-8,解得x0=-2.∴切点为M(-2,-2),切线方程为9x-y+16=0.2013-2014学年度永城一高第一学期高二(1)部数学巩固练习(理)-8-18.[解析]本题考查了函数与导函数的综合应用.由f(x)=a3x3+bx2+cx+d得f′(x)=ax2+2bx+c∵f′(x)-9x=ax2+2bx+c-9x=0的两根为1,4.(1)当a=3时,由(*)式得,解得b=-3,c=12.又∵曲线y=f(x)过原点,∴d=0.故f(x)=x3-3x2+12x.(2)由于a0,所以“f(x)=a3x3+bx2+cx+d在(-∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立”由(*)式得2b=9-5a,c=4a.又∵Δ=(2b)2-4ac=9(a-1)(a-9)解得a∈[1,9],即a的取值范围[1,9].
本文标题:父爱的高度 陈颖
链接地址:https://www.777doc.com/doc-3885153 .html