您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 述职报告 > 四川省成都市2019年中考试卷(数学解析版)
2019年四川省成都市中考数学试卷一、选择题(本大题共10个小題,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡1.(3分)(2019•成都)比﹣3大5的数是()A.﹣15B.﹣8C.2D.8选C.2.(3分)(2019•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.选B.3.(3分)(2019•成都)2019年4月10日,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约5500万光年.将数据5500万用科学记数法表示为()A.5500×104B.55×106C.5.5×107D.5.5×108选C.4.(3分)(2019•成都)在平面直角坐标系中,将点(﹣2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(﹣6,3)C.(﹣2,7)D.(﹣2.﹣1)选A.5.(3分)(2019•成都)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°【解析】∵AB∥CD,∴∠1=∠ADC=30°,又∵等腰直角三角形ADE中,∠ADE=45°,∴∠1=45°﹣30°=15°,选B.6.(3分)(2019•成都)下列计算正确的是()A.5ab﹣3a=2bB.(﹣3a2b)2=6a4b2C.(a﹣1)2=a2﹣1D.2a2b÷b=2a2【解析】A选项,5ab与3b不属于同类项,不能合并,选项错误,B选项,积的乘方(﹣3a2b)2=(﹣3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a﹣1)2=a2﹣2a+1,选项错误D选项,单项式除法,计算正确选D.7.(3分)(2019•成都)分式方程+=1的解为()A.x=﹣1B.x=1C.x=2D.x=﹣2【解析】方程两边同时乘以x(x﹣1)得,x(x﹣5)+2(x﹣1)=x(x﹣1),解得x=﹣1,把x=﹣1代入原方程的分母均不为0,故x=﹣1是原方程的解.选A.8.(3分)(2019•成都)某校开展了主题为“青春•梦想”的艺术作品征集活动.从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50,则这组数据的中位数是()A.42件B.45件C.46件D.50件【解析】将数据从小到大排列为:42,45,46,50,50,∴中位数为46,选C.9.(3分)(2019•成都)如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重命),则∠CPD的度数为()A.30°B.36°C.60°D.72°【解析】如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,选B.10.(3分)(2019•成都)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A.c<0B.b2﹣4ac<0C.a﹣b+c<0D.图象的对称轴是直线x=3【解析】A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2﹣4ac>0,故B错误;C.当x=﹣1时,y<0,即a﹣b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x==3,故D正确.选D.二、填空题(术大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2019•成都)若m+1与﹣2互为相反数,则m的值为1.【解析】根据题意得:m+1﹣2=0,解得:m=1,答案:1.12.(4分)(2019•成都)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为9.【解析】∵AB=AC,∴∠B=∠C,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=9,答案:9.13.(4分)(2019•成都)已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是k<3.【解析】y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;答案k<3;14.(4分)(2019•成都)如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为4.【解析】由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=AB=×8=4.答案4.三、解答题(本大题共6个小题,共54分解答过程写在答题卡上15.(12分)(2019•成都)(1)计算:(π﹣2)0﹣2cos30°﹣+|1﹣|.(2)解不等式组:【解析】(1)原式=1﹣2×﹣4+﹣1,=1﹣﹣4+﹣1,=﹣4.(2)由①得,x≥﹣1,由②得,x<2,所以,不等式组的解集是﹣1≤x<2.16.(6分)(2019•成都)先化简,再求值:(1﹣)÷,其中x=+1.【解析】原式=×=×=将x=+1代入原式==17.(8分)(2019•成都)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.【解析】(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.18.(8分)(2019•成都)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【解析】作CE⊥AB于E,则四边形CDBE为矩形,∴CE=AB=20,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,在Rt△ACE中,tan∠ACE=,∴AE=CE•tan∠ACE≈20×0.70=14,∴CD=BE=AB﹣AE=6,答:起点拱门CD的高度约为6米.19.(10分)(2019•成都)如图,在平面直角坐标系xOy中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.【解析】(1)由得,∴A(﹣2,4),∵反比例函数y=的图象经过点A,∴k=﹣2×4=﹣8,∴反比例函数的表达式是y=﹣;(2)解得或,∴B(﹣8,1),由直线AB的解析式为y=x+5得到直线与x轴的交点为(﹣10,0),∴S△AOB=×10×4﹣×10×1=15.20.(10分)(2019•成都)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.【解答】证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB==2∴⊙O的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CPA∴△APC∽△CPB∴∴PC=2PA,PC2=PA•PB∴4PA2=PA×(PA+2)∴PA=∴PO=∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴即∴PH=,OH=∴HQ==∴PQ=PH+HQ=一、B卷填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2019•成都)估算:≈6(结果精确到1)【解析】∵,∴,∴≈6.答案:622.(4分)(2019•成都)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为﹣2.【解析】根据题意得:x1+x2=﹣2,x1x2=k﹣1,+﹣x1x2=﹣3x1x2=4﹣3(k﹣1)=13,k=﹣2,答案:﹣2.23.(4分)(2019•成都)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为20【解析】设盒子中原有的白球的个数为x个,根据题意得:=,解得:x=20,经检验:x=20是原分式方程的解;∴盒子中原有的白球的个数为20个.答案:20;24.(4分)(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【解析】∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,答案:.25.(4分)(2019•成都)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点为“整点”,已知点A的坐标为(5,0),点B在x轴的上方,△OAB的面积为,则△OAB内部(不含边界)的整点的个数为4或5或6.【解析】设B(m,n),∵点A的坐标为(5,0),∴OA=5,∵△OAB的面积=5•n=,∴n=3,结合图象可以找到其中的一种情况:(以一种为例)当2<m<3时,有6个整数点;当3<m<时,有5个整数点;当m=3时,有4个整数点;可知有6个或5个或4个整数点;答案4或5或6;二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2019•成都)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=x+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【解析】(1)设函数的解析式为:y=kx+b(k≠0),由图
本文标题:四川省成都市2019年中考试卷(数学解析版)
链接地址:https://www.777doc.com/doc-3886845 .html