您好,欢迎访问三七文档
问题?xxedx解决思路利用两个函数乘积的求导法则.设函数()uux和()vvx具有连续导数,(),uuvvdvddu(),vvuuuddvd.vvvuuudd分部积分公式一、基本内容xxde一般说来,下列函数:ln,kxxsin,kxbxcos,kxbx,kaxxearcsin,kxaxarctan,kxbxcos,axebxsinaxebx等等的不定积分要应用分部积分法。凑微分法是分部积分的基础如何选取是问题的关键。,uv类型一:若被积函数是幂函数和正(余)弦函数或幂函数和指数函数的乘积,就考虑设幂函数为,使其降幂一次(假定幂指数是正整数)u例1求积分.cosxdxx解(一)令,cosxudvdxxdx221xdxxcos2)2s(coxdx显然,选择不当,积分更难进行.vu,cosdxxx22coscos)(22xxdxxxdxxxxsin2cos222解(二)令,xudvxdxdxsincoscosxxdxsi)(ndxxsinsinxdxxxsincosxxxC练习sinxxdx练习sinxxdxsinxxdx原式cosxxdcoscosxxxxdcossinxxxC解例2求积分.xxedx解xxedxxxxeexd()xxxeedxxxxeeC()xdexxexd例3求积分2.xxedx解2xxedx22()xxeedxx(再次使用分部积分法)2xxde22xxxexedx22().xxxxexeeC2()2xxxexexdex22xxxeexd练习23xxedx练习23xexdx原式3213xdex32321()3xxxeedx32312()33xxexdex23xxedx2331(2)3xxxexexd解233312()39xxxxxexede233312()39xxxxexeedx23331223927xxxxexeeC类型二:若被积函数是幂函数和对数函数的乘积,就考虑设对数函数为.u例4求积分.ln3xdxx解xdxxln34(n)4lxxd41(4ln)xdx3lnxdxx44(4n1ln)lxxdxx.161ln4144Cxxx4411(ln)4xxxdxx431(ln)4xxxdx2lnxxdx练习2lnxxdx练习2lnxdxx3(n)3lxxd3311ln33(ln)xxxdx3211ln33xxxdx3311ln39xxxC类型三:若被积函数是幂函数和反三角函数的乘积,就考虑设反三角函数为.u例5求积分arccos.xdx解arccosxdx21arccos1xxxdxxarccos)rccos(adxxxx21arccos1xdxxxx2arccos1xxxC221(1)11arccos2xxxdxarcsinxdx练习arcsinxdx练习arcsinxxdarcsinarcsi)n(xxdxx2arcsin1xxxdxx2arcsin1xxxC2211arcsin(1)21xxdxx例6求积分.arctanxdxx解arctanxdxx原式2222arctanarcta)n(xdxxx2221arctan221xxxdxx2211arctan(1)221xxdxx21arctan(arctan).22xxxxC2arctan2xdx练习xdxxarctan23arctan3xdx3333arctanarcta)n(xdxxx3321arctan331xxxdxx3211arctan(1)331xxxdxx3222111arctan(1)3661xxxdxx3221arctan(ln(1))36xxxxC32211arctan(1)361xxdxx若被积函数是指数函数和三角函数的乘积,设三角函数或指数函数是,都可以,但是切记不要来回换,设的函数要统一,很可能会出现循环,设不定积分为一个变量,解方程求结果.u但是由于指数函数的特殊性,通常设三角函数是,解题更加方便。u类型四:例7求积分cos.xexdx解cosxexdxcosxxdecoc()sosxxdxeexcossinxxexexdxsincosxxeexxdsincos(n)sixxxxexxedecossincosxxxexexexdxcosxexdx(sincos).2xexxC注意循环形式sinaxenxdx练习解sinaxenxdxi1snaxnxdaesnn(i)s1iaxaxnxednxea1sincosaxaxnenxenxdxaa21sincosaxaxnnxenxdaea21sicosn)cos(axaxaxeenenxdnaaxnx2221sincossinaxaxaxnnenxenxenxdxaaasinaxenxdx22(sincos)axeanxnnxCna注意循环形式sinaxenxdx21sicosn)cos(axaxaxeenenxdnaaxnx有些题,更多的是需要先运用第一、第二换元法,才能运用分部积分法。例8求积分3sec.xdx解3secxdx2secsecxxdxtsecandxxtantansecsecxxdxx2sectantansecxxxxdx2sectan(sec1)secxxxxdx第一换元法+分部积分法3secxdx2sectan(sec1)secxxxxdx3sectansecsecxxxdxxdx3sectanlnsectansecxxxxxdx注意循环形式3secxdxsectanlnsectan1(2)xxxxC练习求积分3cos.xxdx解3cosxxdx2cocossxxxdx2sicosnxxdx2(1sin)sinxdxx3sin(sin)3xxdx331sinsinsin(s()in)33xxxdxxx3311(sinsin)cossin33xxxxxdx3211(sinsin)cossin3sin3xxxxxxdx3211(sinsin)cossin33cosdxxxxxx3211(sinsin)cos(1cos)cos33xxxxxdx33111(sinsin)coscoscos339xxxxxxC33121(sinsin)coscos339xxxxxC例9求积分.xedx第二换元法+分部积分法解tx设xxed2tdett2tdtet2tetd2xt2dxtdt)2(ttetdet22ttteeC2(1)tteC2(1)xxeC3xedx练习求积分解3tx设3xedx23tetdt23tetdt23ttde3xt23dxtdt223[]tteettdt23(22)tettC33233(22).xexxC236tteettd2366ttteetdtte
本文标题:分部积分法
链接地址:https://www.777doc.com/doc-3898132 .html