您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 相似三角形知识点总结
相似三角形1我爱思考1:世界上最高的树——红杉我爱思考2:中国最高的楼——台北101大楼怎样测量这些非常高大物体的高度?目录1、相似多边形知识点回顾2、相似三角形的判定3、相似三角形的性质4、相似三角形的预备定理相似多边形的判定:对应角相等,对应边的比相等的两个多边形为相似多边形.两个条件要同时具备温馨回顾:相似多边形概念:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.(2)相似多边形的识别:如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(3)相似比:我们把相似多边形对应边的比称为相似比.相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.在10倍的放大镜下看到的三角形与原三角形相比:三角形的边长,周长,面积,角,发生什么关系?我爱学习相似三角形的概念:(1)相似三角形的定义:形状相同的三角形是相似三角形.(2)相似三角形的表示方法:用“∽”表示,读作相似于.如:△ABC和△DEF相似,可以写成△ABC∽△DEF,也可以写成△DEF∽△ABC,读作△ABC相似于△DEF.定义判定方法全等三角形相似三角形回顾并思考三角、三边对应相等的两个三角形全等三角对应相等,三组对应边的比相等的两个三角形相似角边角ASA角角边AAS边边边SSS边角边SAS斜边与直角边HL判定三角形相似,是不是也有这么多种方法呢?相似三角形的判定方法:(1)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(2)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(3)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个直角三角形相似.(5)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;边边边SSS已知:△ABC∽△A1B1C1.A1B1C1ABC111111.ABBCACABBCAC求证:探究1证明:在线段(或它的延长线)上截取,过点D作,交于点E根据前面的定理可得.11AB1ADAB11DEBC∥11AC1111ADEABC∽A1B1C1ABCDE11111111ADAEDEABBCAC1111111,ABBCACADABABBCAC1AEAC,DEBC111ABCABC∽1ADEABC≌∴又A1B1C1ABCDE∴111111111,AEDEBCACBCBCACAC∴∴(SSS)1111ADEABC∽∵∴如果两个三角形的三组对应边的比相等,那么这两个三角形相似。知识要点判定三角形相似的定理之一△ABC∽△A1B1C1.111111,ABBCACABBCAC即:如果那么A1B1C1ABC三边对应成比例,两三角形相似。边边边SSS√ABBCACADDEAE,求证:∠BAD=∠CAE。ADCEB∴ΔABC∽ΔADE∴∠BAC=∠DAE∴∠BAC-∠DAC=∠DAE-∠DAC即∠BAD=∠CAE练一练已知:解:∵ABBCACADDEAE,边角边SAS探究2已知:△ABC∽△A1B1C1.A1B1C1ABC1111,ABBCkABBC求证:∠B=∠B1.你能证明吗?如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。知识要点判定三角形相似的定理之二两边对应成比例,且夹角相等,两三角形相似。边角边SAS√A1B1C1ABC△ABC∽△A1B1C1.即:如果1111,ABBCkABBC∠B=∠B1.那么角边角ASA角角边AAS角角AAA1B1C1ABC已知:△ABC∽△A1B1C1.求证:∠A=∠A1,∠B=∠B1.你能证明吗?如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。知识要点判定三角形相似的定理之三两角对应相等,两三角形相似。角角AAA1B1C1ABC△ABC∽△A1B1C1.即:如果那么√∠A=∠A1,∠B=∠B1.如果两个三角形有一个内角对应相等,那么这两个三角形一定相似吗?一角对应相等的两个三角形不一定相似。△ACD∽△CBD∽△ABC练一练找出图中所有的相似三角形。“双垂直”三角形BDAC有三对相似三角形:△ACD∽△CBD△CBD∽△ABC△ACD∽△ABC相似三角形对应高的比等于相似比∵△ABC∽△A1B1C1∴∠B=∠B1又∵∠ADB=∠A1D1B1=900∴△ADB∽△A1D1B1(角角)1111ADABkADABA1B1C1ABCDD1证明:∴相似三角形对应角平分线的比等于相似比∵△ABC∽△A1B1C1∴∠B=∠B1,∠BAC=∠B1A1C1∵AD,A1D1分别是∠BAC和∠B1A1C1的角平分线∴∠BAD=∠B1A1D1∴△ADB∽△A1D1B1(角角)1111ADABkADABA1B1C1ABCDD1证明:∴相似三角形对应中线的比等于相似比A1B1C1ABCDD11111ADABkADAB探究4已知:△ABC∽△A1B1C1.1111,ABBCkABBC求证:你能证明吗?HLABCA1B1C1Rt△ABC和Rt△A1B1C1.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。知识要点真命题HLABC△ABC∽△A1B1C1.即:如果那么√A1B1C11111,ABBCkABBCRt△ABC和Rt△A1B1C1.利用利用三角形相似可以解决一些不能直接测量的物体的长度的问题学校操场上的国旗旗杆的高度我们无法直接测量,你能否借助平行的太阳光线来测量呢?轻松一刻ABOA′B′O′6m1.2m1.6m古希腊数学家、天文学家泰勒斯利用相似三角形的原理,测量金字塔的高度。DEA(F)BO2m3m201m解:太阳光是平行线,因此∠BAO=∠EDF又∠AOB=∠DFE=90°∴△ABO∽△DEFBOEF=BO==134OAFDOA·EFFD=201×23AFEBO┐┐还可以有其他方法测量吗?一题多解OBEF=OAAF△ABO∽△AEFOB=OA·EFAF平面镜相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比.(3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.ABCDEF相似三角形的周长比等于相似比吗?从而由等比性质有KACCACBBCBAAB''''''KACCBBACABCAB''''''相似三角形的周长比等于相似比.已知:如图,△ABC∽△A’B’C’,它们的相似比是K,AD、A’D’分别是高.求证:2''':KSSCBAABC证明:∵△ABC∽△A’B’C’KDAADCBBC''''2'''''''2121KKKDACBADBCSSCBAABCB’D’C’A’ABCD相似三角形的面积比等于相似比的平方.已知两个三角形相似,请完成下列表格相似比周长比面积比2243131912221010100212222如图,△ABC中,DE⁄⁄FG⁄⁄BCAD=DF=FB,则S△ADE:S四边形DFGE:S四边形FBCG=_________.1:3:5已知:梯形ABCD中AD∥BC,AD=36cm,BC=60cm,延长两腰BA,CD交于点O,OF⊥BC,交AD于E,EF=32cm,则OF=_______.ABCDEOF80cm已知梯形ABCD中,AD∥BC,对角线AC、BD交于点O,若△AOD的面积为4cm2,△BOC的面积为9cm2,则梯形ABCD的面积为_________cm2ABCDO解:∴△AOD∽△COBS△AOD:S△COB=4:9∴OD:OB=2:3∴S△AOD:S△AOB=2:3∴S△AOB=6cm2∴梯形ABCD的面积为25cm2∵AD∥BC25相似三角形判定的预备定理:平行于三角形一边的直线与其他两边(或两边的延长线)相交。所构成的三角形与原三角形相似。平行于三角形一边的直线与其他两边(或两边的延长线)相交。所构成的三角形与原三角形相似。DABCE∵DE∥BC∴△ADE∽△ABCBCDEACAEABADCAEDBADEA,,A相似三角形判定的预备定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等.ABCDEl1l2l3l4l5ABCDEl1l2l3l4l5L1L2L3L4L5L1L2L3L4L5ABCEDABCDE∵DE∥BCADAEACAB=∵∵DE∥BCADAEACAB=∵数学符号语言数学符号语言平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等如图,△ABC中,DE∥BC,GF∥AB,DE、GF交于点O,则图中与△ABC相似的三角形共有多少个?请你写出来.解:与△ABC相似的三角形有3个:△ADE△GFC△GOEABCDEFGO如图,在△ABC中,DG∥EH∥FI∥BC,(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG:BC=_____。ABCDEFGHI△ADG∽△AEH∽△AFI∽△ABC1:4课堂小结1.相似图形三角形的判定方法:定义预备定理判定定理一(三组对应边的比相等)判定定理二(两组对应边的比相等且夹角相等)判定定理三(两角对应相等)(三边对应成比例,三角相等)(SSS)(AA)(SAS)对应角相等。对应边的比相等。对应高的比等于相似比。对应中线的比等于相似比。对应角平分线的比等于相似比。2.相似三角形的性质:(1)所有的等腰三角形都相似。(2)所有的等腰直角三角形都相似。(3)所有的等边三角形都相似。(4)所有的直角三角形都相似。(5)有一个角是100°的两个等腰三角形都相似。(6)有一个角是70°的两个等腰三角形都相似。(7)若两个三角形相似比为1,则它们必全等。(8)相似的两个三角形一定大小不等。1.判断下列说法是否正确?并说明理由。√×√×√×√×随堂练习ABCDFE1、若BF=3,CF=2,AD=1.5,DF=6,你能求出线段AE的长度吗?2∴△BDF∽△BAC∵DF∥AC∴AC6233∴AC=10∴ACDFBCBF解:∵DE∥BC,DF∥AC∴四边形DFCE为平行四边形∴FC=DE=2,EC=DF=6321.566∴AE=AC-CE=10-6=4∴△BDM∽△BACABCMDE2、如图:在△ABC中,点M是BC上任一点,MD∥AC,ME∥AB,若求的值。=,BDABECAC25解:∵MD∥AC,∴==,BDBA25BMBC∴=CECACMCB=35MCBC又∵ME∥AB,∴△CEM∽△CAB2份5份3份35=1.铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高___8___m。OBDCA┏┛1m16m0.5m?迎考精炼2.某一时刻树的影长为8米,同一时刻身高为1.5米的人的影长为3米,则树高为__4____。3.△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?NMQPEDCBA解:设正方形PQMN是符合要求的△ABC的高AD与PN相交于点E。设正方形PQMN的边长为x毫米。因为PN∥BC,所以△APN∽△ABC所以AEAD=PNBC因此,得x=48(毫米)。80–x80=x1204.小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)ADBCE┏┏0.8m5m10m?2.4m5.在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为90米
本文标题:相似三角形知识点总结
链接地址:https://www.777doc.com/doc-3904498 .html