您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 数据通信与网络 > 高考定积分练习题资料
高考定积分应用常见题型大全一.选择题(共21小题)1.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.2.(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.3.设f(x)=,函数图象与x轴围成封闭区域的面积为()A.B.C.D.4.定积分的值为()A.B.3+ln2C.3﹣ln2D.6+ln25.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()A.1B.C.D.6.=()A.πB.2C.﹣πD.47.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()A.2B.4C.5D.89.若a=,b=,则a与b的关系是()A.a<bB.a>bC.a=bD.a+b=010.的值是()A.B.C.D.11.若f(x)=(e为自然对数的底数),则=()A.+e2﹣eB.+eC.﹣e2+eD.﹣+e2﹣e12.已知f(x)=2﹣|x|,则()A.3B.4C.3.5D.4.513.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()A.7B.8C.7.5D.6.514.积分=()A.B.C.πa2D.2πa215.已知函数的图象与x轴所围成图形的面积为()A.1/2B.1C.2D.3/216.由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积是()A.4B.C.D.2π17.曲线y=x3在点(1,1)处的切线与x轴及直线x=1所围成的三角形的面积为()A.B.C.D.18.图中,阴影部分的面积是()A.16B.18C.20D.2219.如图中阴影部分的面积是()A.B.C.D.20.曲线与坐标轴围成的面积是()A.B.C.D.21.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=高考定积分应用常见题型大全(含答案)参考答案与试题解析一.选择题(共21小题)1.(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.考点:定积分在求面积中的应用;几何概型.501974专题:计算题.分析:根据题意,易得正方形OABC的面积,观察图形可得,阴影部分由函数y=x与y=围成,由定积分公式,计算可得阴影部分的面积,进而由几何概型公式计算可得答案.解答:解:根据题意,正方形OABC的面积为1×1=1,而阴影部分由函数y=x与y=围成,其面积为∫01(﹣x)dx=(﹣)|01=,则正方形OABC中任取一点P,点P取自阴影部分的概率为=;故选C.点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.2.(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A.B.C.D.考点:定积分在求面积中的应用.501974专题:计算题.分析:要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2﹣x3)dx即可.解答:解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]所求封闭图形的面积为∫01(x2﹣x3)dx═,故选A.点评:本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积.3.设f(x)=,函数图象与x轴围成封闭区域的面积为()A.B.C.D.考点:分段函数的解析式求法及其图象的作法;函数的图象;定积分在求面积中的应用.501974专题:计算题;数形结合.分析:利用坐标系中作出函数图象的形状,通过定积分的公式,分别对两部分用定积分求出其面积,再把它们相加,即可求出围成的封闭区域曲边图形的面积.解答:解:根据题意作出函数的图象:根据定积分,得所围成的封闭区域的面积S=故选C点评:本题考查分段函数的图象和定积分的运用,考查积分与曲边图形面积的关系,属于中档题.解题关键是找出被积函数的原函数,注意运算的准确性.4.定积分的值为()A.B.3+ln2C.3﹣ln2D.6+ln2考点:定积分;微积分基本定理;定积分的简单应用.501974专题:计算题.分析:由题设条件,求出被积函数的原函数,然后根据微积分基本定理求出定积分的值即可.解答:解:=(x2+lnx)|12=(22+ln2)﹣(12+ln1)=3+ln2故选B.点评:本题考查求定积分,求解的关键是掌握住定积分的定义及相关函数的导数的求法,属于基础题.5.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()A.1B.C.D.考点:定积分;定积分的简单应用.501974专题:计算题.分析:联立由曲线y=x2和曲线y=两个解析式求出交点坐标,然后在x∈(0,1)区间上利用定积分的方法求出围成的面积即可.解答:解:联立得,解得或,设曲线与直线围成的面积为S,则S=∫01(﹣x2)dx=故选:C点评:考查学生求函数交点求法的能力,利用定积分求图形面积的能力.6.=()A.πB.2C.﹣πD.4考点:微积分基本定理;定积分的简单应用.501974专题:计算题.分析:由于F(x)=x2+sinx为f(x)=x+cosx的一个原函数即F′(x)=f(x),根据∫abf(x)dx=F(x)|ab公式即可求出值.解答:解:∵(x2++sinx)′=x+cosx,∴(x+cosx)dx=(x2+sinx)=2.故答案为:2.点评:此题考查学生掌握函数的求导法则,会求函数的定积分运算,是一道基础题.7.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()A.2B.4C.5D.8考点:定积分的简单应用.501974分析:根据导函数的图象,分析原函数的性质或作出原函数的草图,找出a、b满足的条件,画出平面区域,即可求解.解答:解:由图可知[﹣2,0)上f′(x)<0,∴函数f(x)在[﹣2,0)上单调递减,(0,4]上f′(x)>0,∴函数f(x)在(0,4]上单调递增,故在[﹣2,4]上,f(x)的最大值为f(4)=f(﹣2)=1,∴f(2a+b)<1(a≥0,b≥0)⇒表示的平面区域如图所示:故选B.点评:本题考查了导数与函数单调性的关系,以及线性规划问题的综合应用,属于高档题.解决时要注意数形结合思想应用.8.∫01exdx与∫01exdx相比有关系式()A.∫01exdx<∫01exdxB.∫01exdx>∫01exdxC.(∫01exdx)2=∫01exdxD.∫01exdx=∫01exdx考点:定积分的简单应用;定积分.501974专题:计算题.分析:根据积分所表示的几何意义是以直线x=0,x=1及函数y=ex或y=ex在图象第一象限内圆弧与坐标轴围成的面积,只需画出函数图象观察面积大小即可.解答:解:∫01exdx表示的几何意义是以直线x=0,x=1及函数y=ex在图象第一象限内圆弧与坐标轴围成的面积,∫01exdx表示的几何意义是以直线x=0,x=1及函数y=ex在图象第一象限内圆弧与坐标轴围成的面积,如图∵当0<x<1时,exx>ex,故有:∫01exdx>∫01exdx故选B.点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题.9.若a=,b=,则a与b的关系是()A.a<bB.a>bC.a=bD.a+b=0考点:定积分的简单应用.501974专题:计算题.分析:a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°.解答:解:∵a==(﹣cosx)=(﹣cos2)﹣(﹣cos)=﹣cos2≈﹣cos114.6°=sin24.6°,b==sinx=sin1﹣sin0=sin1≈sin57.3°,∴b>a.故选A.点评:本题考查定积分的应用,是基础题.解题时要认真审题,仔细解答.10.的值是()A.B.C.D.考点:定积分的简单应用.501974专题:计算题.分析:根据积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积即可.解答:解;积分所表示的几何意义是以(1,0)为圆心,1为半径第一象限内圆弧与抛物线y=x2在第一象限的部分坐标轴围成的面积,故只需求出圆的面积乘以四分之一与抛物线在第一象限的部分与x轴和直线x=1围成的图形的面积之差.即=﹣=﹣=故答案选A点评:本题主要考查了定积分,定积分运算是求导的逆运算,解题的关键是求原函数,也可利用几何意义进行求解,属于基础题11.若f(x)=(e为自然对数的底数),则=()A.+e2﹣eB.+eC.﹣e2+eD.﹣+e2﹣e考点:定积分的简单应用.501974专题:计算题.分析:由于函数为分段函数,故将积分区间分为两部分,进而分别求出相应的积分,即可得到结论.解答:解:===故选C.点评:本题重点考查定积分,解题的关键是将积分区间分为两部分,再分别求出相应的积分.12.已知f(x)=2﹣|x|,则()A.3B.4C.3.5D.4.5考点:定积分的简单应用.501974专题:计算题.分析:由题意,,由此可求定积分的值.解答:解:由题意,=+=2﹣+4﹣2=3.5故选C.点评:本题考查定积分的计算,解题的关键是利用定积分的性质化为两个定积分的和.13.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=()A.7B.8C.7.5D.6.5考点:定积分的简单应用.501974专题:计算题.分析:∫﹣22f(x)dx=∫﹣22(3﹣|x﹣1|)dx,将∫﹣22(3﹣|x﹣1|)dx转化成∫﹣21(2+x)dx+∫12(4﹣x)dx,然后根据定积分的定义先求出被积函数的原函数,然后求解即可.解答:解:∫﹣22f(x)dx=∫﹣22(3﹣|x﹣1|)dx=∫﹣21(2+x)dx+∫12(4﹣x)dx=(2x+x2)|﹣21+(4x﹣x2)|12=7故选A.点评:本题主要考查了定积分,定积分运算是求导的逆运算,同时考查了转化与划归的思想,属于基础题.14.积分=()A.B.C.πa2D.2πa2考点:定积分的简单应用;定积分.501974专题:计算题.分析:本题利用定积分的几何意义计算定积分,即求被积函数y=与x轴所围成的图形的面积,围成的图象是半个圆.解答:解:根据定积分的几何意义,则表示圆心在原点,半径为3的圆的上半圆的面积,故==.故选B.点评:本小题主要考查定积分、定积分的几何意义、圆的面积等基础知识,考查考查数形结合思想.属于基础题.15.已知函数的图象与x轴所围成图形的面积为()A.1/2B.1C.2D.3/2考点:定积分在求面积中的应用.501974专题:计算题.分析:根据几何图形用定积分表示出所围成的封闭图形的面积,求出函数f(x)的积分,求出所求即可.解答:解:由题意图象与x轴所围成图形的面积为=(﹣)|01+sinx=+1=故选D.点评:本题考查定积分在求面积中的应用,求解的关键是正确利用定积分的运算规则求出定积分的值,本题易因为对两个知识点不熟悉公式用错而导致错误,牢固掌握好基础知识很重要.16.由函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形的面积是()A.4B.C.D.2π考点:定积分在求面积中的应用.501974专题:计算题.分析:由题意可知函数y=cosx(0≤x≤2π)的图象与直线及y=1所围成的一个封闭图形可利用定积分进行计算,只要求∫0(1﹣cosx)dx即可.然后根据积分的运算公式进行求解
本文标题:高考定积分练习题资料
链接地址:https://www.777doc.com/doc-3937610 .html