您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2019年全国III卷文科数学高考真题
2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给的四个选项中,只有一项是符合题目要求的。1.已知集合2{1,0,1,2}{1}ABxx,,则ABA.1,0,1B.0,1C.1,1D.0,1,22.若(1i)2iz,则z=A.1iB.1+iC.1iD.1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A.16B.14C.13D.124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.85.函数()2sinsin2fxxx在[0,2π]的零点个数为A.2B.3C.4D.56.已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=A.16B.8C.4D.27.已知曲线elnxyaxx在点(1,ae)处的切线方程为y=2x+b,则A.a=e,b=–1B.a=e,b=1C.a=e–1,b=1D.a=e–1,1b8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.执行下边的程序框图,如果输入的为0.01,则输出s的值等于A.4122B.5122C.6122D.712210.已知F是双曲线C:22145xy的一个焦点,点P在C上,O为坐标原点,若=OPOF,则OPF△的面积为A.32B.52C.72D.9211.记不等式组6,20xyxy表示的平面区域为D.命题:(,),29pxyDxy;命题:(,),212qxyDxy.下面给出了四个命题①pq②pq③pq④pq这四个命题中,所有真命题的编号是A.①③B.①②C.②③D.③④12.设fx是定义域为R的偶函数,且在0,单调递减,则A.f(log314)>f(322)>f(232)B.f(log314)>f(232)>f(322)C.f(322)>f(232)>f(log314)D.f(232)>f(322)>f(log314)二、填空题:本题共4小题,每小题5分,共20分。13.已知向量(2,2),(8,6)ab,则cos,ab___________.14.记Sn为等差数列{an}的前n项和,若375,13aa,则10S___________.15.设12FF,为椭圆C:22+13620xy的两个焦点,M为C上一点且在第一象限.若12MFF△为等腰三角形,则M的坐标为___________.16.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体1111ABCDABCD挖去四棱锥O−EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,16cm4cmAB=BC=AA=,,3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18.(12分)ABC△的内角A、B、C的对边分别为a、b、c.已知sinsin2ACabA.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.19.(12分)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.20.(12分)已知函数32()22fxxax.(1)讨论()fx的单调性;(2)当0a3时,记()fx在区间[0,1]的最大值为M,最小值为m,求Mm的取值范围.21.(12分)已知曲线C:y=22x,D为直线y=12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4–4:坐标系与参数方程](10分)如图,在极坐标系Ox中,(2,0)A,(2,)4B,(2,)4C,(2,)D,弧AB,BC,CD所在圆的圆心分别是(1,0),(1,)2,(1,),曲线1M是弧AB,曲线2M是弧BC,曲线3M是弧CD.(1)分别写出1M,2M,3M的极坐标方程;(2)曲线M由1M,2M,3M构成,若点P在M上,且||3OP,求P的极坐标.23.[选修4–5:不等式选讲](10分)设,,xyzR,且1xyz.(1)求222(1)(1)(1)xyz的最小值;(2)若2221(2)(1)()3xyza成立,证明:3a或1a.2019年普通高等学校招生全国统一考试文科数学·参考答案一、选择题1.A2.D3.D4.C5.B6.C7.D8.B9.C10.B11.A12.C二、填空题13.21014.10015.(3,15)16.118.8三、解答题17.解:(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.18.解:(1)由题设及正弦定理得sinsinsinsin2ACABA.因为sinA0,所以sinsin2ACB.由180ABC,可得sincos22ACB,故cos2sincos222BBB.因为cos02B,故1sin22B,因此B=60°.(2)由题设及(1)知ABC△的面积34ABCSa△.由正弦定理得sin120sin31sinsin2tan2CcAaCCC.由于ABC△为锐角三角形,故0°A90°,0°C90°.由(1)知A+C=120°,所以30°C90°,故122a,从而3382ABCS△.因此,ABC△面积的取值范围是33,82.19.解:(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得ABBE,ABBC,故AB平面BCGE.又因为AB平面ABC,所以平面ABC平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB平面BCGE,所以DE平面BCGE,故DECG.由已知,四边形BCGE是菱形,且∠EBC=60°得EMCG,故CG平面DEM.因此DMCG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.20.解:(1)2()622(3)fxxaxxxa.令()0fx,得x=0或3ax.若a0,则当(,0),3ax时,()0fx;当0,3ax时,()0fx.故()fx在(,0),,3a单调递增,在0,3a单调递减;若a=0,()fx在(,)单调递增;若a0,则当,(0,)3ax时,()0fx;当,03ax时,()0fx.故()fx在,,(0,)3a单调递增,在,03a单调递减.(2)当03a时,由(1)知,()fx在0,3a单调递减,在,13a单调递增,所以()fx在[0,1]的最小值为32327aaf,最大值为(0)=2f或(1)=4fa.于是3227am,4,02,2,23.aaMa所以332,02,27,23.27aaaMmaa当02a时,可知3227aa单调递减,所以Mm的取值范围是8,227.当23a时,327a单调递增,所以Mm的取值范围是8[,1)27.综上,Mm的取值范围是8[,2)27.21.解:(1)设111,,,2DtAxy,则2112xy.由于y'x,所以切线DA的斜率为1x,故11112yxxt.整理得1122+1=0.txy设22,Bxy,同理可得2222+1=0txy.故直线AB的方程为2210txy.所以直线AB过定点1(0,)2.(2)由(1)得直线AB的方程为12ytx.由2122ytxxy,可得2210xtx.于是21212122,121xxtyytxxt.设M为线段AB的中点,则21,2Mtt.由于EMAB,而2,2EMtt,AB与向量(1,)t平行,所以220ttt.解得t=0或1t.当t=0时,||EM=2,所求圆的方程为22542xy;当1t时,||2EM,所求圆的方程为22522xy.22.解:(1)由题设可得,弧,,ABBCCD所在圆的极坐标方程分别为2cos,2sin,2cos.所以1M的极坐标方程为π2cos04,2M的极坐标方程为π3π2sin44,3M的极坐标方程为3π2cosπ4.(2)设(,)P,由题设及(1)知若π04,则2cos3,解得π6;若π3π44,则2sin3,解得π3或2π3;若3ππ4,则2cos3,解得5π6.综上,P的极坐标为π3,6或π3,3或2π3,3或5π3,6.23.解:(1)由于2[(1)(1)(1)]xyz222(1)(1)(1)
本文标题:2019年全国III卷文科数学高考真题
链接地址:https://www.777doc.com/doc-3939300 .html