您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 函数单调性之分类讨论
1函数单调性之分类讨论一、思维导图含参函数单调性的讨论函数单调性判断导数正负数轴标根函数形式含分式函数形式二次函数形式一次函数形式求导数求定义域、、、e、、x54321单调区间数轴标根单调区间数轴标根)(0)(0)(:)1(kbxkkbxkbkxxf、)(000000))(()()(:)2(2121212xxxxaaaxxxxaxfcbxaxxf、、或比较两根大小单调区间数轴标根单调区间数轴标根不能判断则或一次函数讨论式讨论参数因式分解二次式讨论一次式讨论讨论含分式的式子不用管一般情况下分母通分)()()()()(:)3(0xgbaxxgxfxf,、、根据参数分类讨论形式根据参数分类讨论形式注的式子含提取因式分解)()())(()()0:)(()(:)4(baxexfbeaexfeexfx、exx、xx、x2二、例题精析例题1、讨论函数axxxfln)(的单调性。[解析]定义域:),0(函数的导数:xaxaxxf、11)(①当0a时,01)(xxf、,故)(xf在),0(上单调递增;②当0a时,,01)(xaxxf、故)(xf在),0(上单调递增;③当0a时,令,0)(xf、得:,1ax故)(xf在)1,0(a上单调递增;在),1(a上单调递减;例题2、已知函数)0(,)1(21ln)(2axaaxxxf,(1)讨论)(xf的单调性;[解析]定义域:),0(函数的导数:xaxxaxxaaxaaxxxf、)1)(1(1)1(11)(222)1(1)(4)1(aaa①0时,即1a时,故)(xf在),0(单调递增,0时,axx1,121,比较两根大小情况,②21xx时,即01a时,故)(xf在),1(),1,0(a单调递增,在)1,1(a单调递减,21xx时,即1a或0a,③当1a时,故)(xf在),1(),1,0(a单调递增,在)1,1(a单调递减,④当0a时,故)(xf在)1,0(单调递增,在),1(单调递减,3例题3、(2017全国卷1理21)已知函数xeaaexfxx)2()(2(1)讨论()fx的单调性;[解析]:定义域:(,),函数的导数:2'22111xxxxfxaeaeaee因为,01xe所以只讨论1xae的符号,①当,a时00)(xf、,故)(xf在(,)上单调递减。②当,a时0令0)(xf、得,1lnax即:)1ln,(ax时,0)(xf、,),1(lnax时,0)(xf、,故)(xf在)1ln,(a上单调递减,在),1(lna上单调递增,三、练习巩固1、(2017全国卷3文21)已知函数xaaxxxf)12(ln)(2(1)讨论)(xf的单调性[解析]:定义域(0,+),函数的导数:xaxxaaxxxf、)12)(1(1221)(①当0a时,0)(xf、,故)(xf在(0,+)上单调递增。②当0a时,分子=,21,10)12)(1(21axxaxx且21xx,故f(x)在单调递增,在单调递减.42、(2016四川高考理数21),ln)(2xaaxxf其中,Ra(1)讨论)(xf的单调性[解析]定义域:),0(函数的导数:xaxxaxxf、1212)(2①当,a时00)(xf、,故)(xf在),0(上单调递减。②当0a时,分子=,21,21012212axaxax且21xx,即:)21,0(ax时,0)(xf、,),21(ax时,0)(xf、,故)(xf在)21,0(a上单调递减,在),21(a上单调递增,3、(2014湖南高考)已知常数a>0,函数f(x)=ln(1+ax)-2xx+2.(1)讨论f(x)在区间(0,+∞)上的单调性;[解析]),0(x函数的导数:222)2)(1()1(4)2(2)2(211)(xaxaaxxxxaxxf、①当1a时,,0)(xf、故)(xf在),0(上单调递增。②当10a时,令,0)(xf、得,121aax,122aax),12(),12,(aaaax时,,0)(xf、)12,0(aax时,,0)(xf、故)(xf在)12,0(aax上单调递减,),12(aax上单调递增。54、(2016北京模拟理数)已知函数)(,11ln)(Raxaaxxxf(1)当21a时,讨论)(xf的单调性。[解析]定义域:),0(函数的导数:2222)1)(1(111)(xaaxxxaxaxxaaxxf、22)12()1()(41aaa①当0a时,21)(xxxf、,故)(xf在)1,0(上单调递减,在),1(上单调增。②0时,21a,,0)(xf、,故)(xf在),0(上单调递减。0时,aaxx1,121,比较两根大小:③21021axx,),1()1,0(aax或时,0)(xf、,)1,1(aax时,0)(xf、,故)(xf在),1(),1,0(aa上单调递减,在)1,1(aa上单调递增。④)(21,021舍或aaxx,)1,0(x时,0)(xf、,),1(x时,0)(xf、,故)(xf在)1,0(上单调递减,在),1(上单调递增。综上所述:当0a时,()fx在(0,1)单调递减,(1,)单调递增;当12a时,()fx在(0,)单调递减;当102a时,()fx在(0,1)递减,1(1,1)a递增,1(1,)a递减.65、(2014全国卷)已知函数)1(,)1ln()(aaxaxxxf(1)讨论)(xf的单调性;[解析]定义域:),1(函数的导数:22))(1()]2([)(axxaaxxxf、2222)2(014)2(aaaa①0时,即)(02舍或aa时,0)(xf、,故)(xf在),1(单调递增。0时,,01x,222aax比较两根大小情况:②21xx时,即21a时,)2,1(2aax,),0(时,0)(xf、)0,2(2aax时,0)(xf、。故)(xf在)2,1(2aa,),0(上单调递增;在)0,2(2aa上单调递减。③21xx时,即2a时,)0,1(x,),2(2aa时,0)(xf、)2,0(2aax时,0)(xf、。故)(xf在)0,1(,),2(2aa上单调递增;在)2,0(2aa上单调递减。76、已知函数Raxaxxxf),1ln(21)(2,(1)讨论)(xf单调区间;[解析]定义域:),1(函数的导数:1)]1([1)(2xaaxxxxaxaxxf、①当0a时,1)(xxxf、,故)(xf在)0,1(单调递减,在),0(单调递减,41)(4)(22aaa,aaxx1,021,比较两根大小情况:②21xx时,即10a时,故)(xf在),1(),0,1(aa单调递减,在)1,0(aa单调递增。21xx时,即1a或0a时,③当1a时,故)(xf在),0(),1,1(aa单调递减,在)0,1(aa单调递增。④当0a时,故)(xf在),0(单调递增,在)0,1(单调递减。⑤当1a时,01)(2xxxf、,故)(xf在),1(单调递减。87、(2016北京理数)已知函数)0(,2)1ln()(2kxkxxxf(1)讨论)(xf的单调性;[解析]定义域:),1(函数的导数:1)1(1)1()(2xkkxxxxkkxxf、①当0k时,1)(xxxf、,故)(xf在)0,1(上单调递增,在),0(上单调递减。22)1(04)1(kkk②0时,即1k时,0)(xf、,故)(xf),1(上单调递增。0时,即3223220kk或时,kkxx1,021,比较两根大小情况③当21xx时,即10k时,,故)(xf在),1(),0,1(kk上单调递增,在)1,0(kk上单调递减。④当21xx时,即1k时,,故)(xf在),0(),1,1(kk上单调递增,在)0,1(kk上单调递减。98、已知函数)0(,)1ln()(2aaxxaxxf,(1)讨论)(xf的单调性;[解析]定义域:),1(a函数的导数:1)22(21)2(2)(222axaaxaxaxxaaxxf、2222)2(024)2(aaa①0时,即2a时,故)(xf在),22(单调递增,0时,aaxx22,0221,比较两根大小情况,②21xx时,即2a时,故)(xf在),22(),0,1(2aaa单调递增,)(xf在)22,0(2aa单调递减,③21xx时,即20a时,故)(xf在),0(),22,1(2aaa单调递增,)(xf在)0,22(2aa单调递减,109、已知函数Raaaxexfx),1(2)(2(1)讨论)(xf的单调性;[解析]定义域:R函数的导数:)12(21221)1(21)(22aaxaxeaxeaaxexfxxx、因为,021xe所以只讨论122aaxax的符号即可,①当0a时,,021)(x、exf故)(xf在R上单调递减;aaaa4)1()(4)2(2②当0时,即0a,同上;③当0时,即0a,故)(xf在R上单调递减;④当0时,即0a,ax111ax11,1,又知21xx,故)(xf在),11,(a),,11(a上单调递增,在)11,11(aa上单调递减。1110、(2018全国卷1理21)已知函数xaxxxfln1)((1)讨论)(xf的单调性[解析]:定义域为),0(,函数的导数为222111)(xaxxxaxxf、讨论参数符号情况:①当0a时,01)(22xxxf、,)(xf在),0(单调递减。②当0a时,01)(22xaxxxf、,)(xf在),0(单调递减。当0a时,无法判断)(xf、符号讨论根的判别式情况4114)(22aa③当20a时,0,0)(xf、,)(xf在),0(单调递减。④当2a时,24,021aax,2422aax讨论两根大小情况:21xx)(xf在),24,0(2aa),,24(2aa单调递减,在)24,24(22aaaa单调递增。综上所述:当2a时,)(xf在),0(上单调递减。当2a时,)(xf在),24,0(2aa),,24(2aa单调递减,在)24,24(22aaaa单调递增。1211、(2017全国卷1文21)已知函数xaaeexfxx2)()((1)讨论)(xf的单调性[解析]函数()fx的定义域:(,),函数的导数:22()2e
本文标题:函数单调性之分类讨论
链接地址:https://www.777doc.com/doc-3944392 .html