您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初三二次函数动点练习题及答案
初三二次函数动点练习题及答案1.已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.2.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与x轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?3.在平面直角坐标系xOy中,已知抛物线y=x2﹣2mx+m2﹣9.(1)求证:无论m为何值,该抛物线与x轴总有两个交点;(2)该抛物线与x轴交于A,B两点,点A在点B的左侧,且OA<OB,与y轴的交点坐标为(0,﹣5),求此抛物线的解析式;(3)在(2)的条件下,抛物线的对称轴与x轴的交点为N,若点M是线段AN上的任意一点,过点M作直线MC⊥x轴,交抛物线于点C,记点C关于抛物线对称轴的对称点为D,点P是线段MC上一点,且满足MP=MC,连结CD,PD,作PE⊥PD交x轴于点E,问是否存在这样的点E,使得PE=PD?若存在,求出点E的坐标;若不存在,请说明理由.1.(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,[来源:学+科+网]∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=×(2t)×=t2,②1<t≤1.5时,S=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+;所以,S与t的关系式为S=.2.(1)抛物线y=(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+b经过点B(4,0),∴﹣×4+b=0,解得b=,∴直线BD解析式为:y=﹣x+.当x=﹣5时,y=3,∴D(﹣5,3).∵点D(﹣5,3)在抛物线y=(x+2)(x﹣4)上,∴(﹣5+2)(﹣5﹣4)=3,∴k=.(2)由抛物线解析式,令x=0,得y=k,∴C(0,﹣k),OC=k.因为点P在第一象限内的抛物线上,所以∠ABP为钝角.因此若两个三角形相似,只可能是△ABC∽△APB或△ABC∽△ABP.①若△ABC∽△APB,则有∠BAC=∠PAB,如答图2﹣1所示.设P(x,y),过点P作PN⊥x轴于点N,则ON=x,PN=y.tan∠BAC=tan∠PAB,即:,∴y=x+k.∴D(x,x+k),代入抛物线解析式y=(x+2)(x﹣4),得(x+2)(x﹣4)=x+k,整理得:x2﹣6x﹣16=0,解得:x=8或x=2(与点A重合,舍去),∴P(8,5k).∵△ABC∽△APB,∴,即,解得:k=.②若△ABC∽△ABP,则有∠ABC=∠PAB,如答图2﹣2所示.与①同理,可求得:k=.综上所述,k=或k=.(3)由(1)知:D(﹣5,3),如答图2﹣2,过点D作DN⊥x轴于点N,则DN=3,ON=5,BN=4+5=9,∴tan∠DBA===,∴∠DBA=30°.过点D作DK∥x轴,则∠KDF=∠DBA=30°.过点F作FG⊥DK于点G,则FG=DF.由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,∴t=AF+FG,即运动时间等于折线AF+FG的长度.由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段.过点A作AH⊥DK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点.∵A点横坐标为﹣2,直线BD解析式为:y=﹣x+,∴y=﹣×(﹣2)+=2,∴F(﹣2,2).综上所述,当点F坐标为(﹣2,2)时,点M在整个运动过程中用时最少.3.(1)令y=0,则x2﹣2mx+m2﹣9=0,∵△=(﹣2m)2﹣4m2+36>0,∴无论m为何值时方程x2﹣2mx+m2﹣9=0总有两个不相等的实数根,∵抛物线y=x2﹣2mx+m2﹣9的开口向上,顶点在x轴的下方,∴该抛物线与x轴总有两个交点.(2)∵抛物线y=x2﹣2mx+m2﹣9与y轴交点坐标为(0,﹣5),∴﹣5=m2﹣9.解得:m=±2.当m=﹣2,y=0时,x2+4x﹣5=0解得:x1=﹣5,x2=1,∵抛物线y=x2﹣2mx+m2﹣9与x轴交于A,B两点(点A在点B的左侧,且OA<OB),∴m=﹣2不符合题意,舍去.∴m=2.∴抛物线的解析式为y=x2﹣4x﹣5;(3)如图2,假设E点存在,∵MC⊥EM,CD⊥MC,∴∠EMP=∠PCD=90°.∴∠MEP+∠MPE=90°∵PE⊥PD,∴∠EPD=90°,∴∠MPE+∠DPC=90°∴∠MEP=∠CPD.在△EMP和△PCD中,,∴△EPM≌△PDC(AAS).∴PM=DC,EM=PC设C(x0,y0),则D(4﹣x0,y0),P(x0,y0).∴|2x0﹣4|=﹣y0.∵点C在抛物线y=x2﹣4x﹣5上;∴y0═x02﹣4x0﹣5∴|2x0﹣4|=﹣(x02﹣4x0﹣5).当2x0﹣4=﹣(x02﹣4x0﹣5)时,解得:x01=3,x02=﹣7(舍去),当4﹣2x0=﹣(x02﹣4x0﹣5)时,解得:x03=1,x04=11(舍去),∴x0=1或x0=3.∴P(1,﹣2)或P(3,﹣2).∴PC=6.∴ME=PC=6.∴E(7,0)或E(﹣3,0).
本文标题:初三二次函数动点练习题及答案
链接地址:https://www.777doc.com/doc-3946167 .html