您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 《几何画板》教程――从入门到精通
1写在前面我们经过几年的信息技术课程的学习,对常用的办公软件、网页制作软件都有了比较详细的了解,为我们有效利用信息技术改造学习奠定了良好的基础。本学年,我们将就信息技术和学科学习的整合进行探索,分上下两篇:上篇主要学习用几何画板做数理实验的方法;下篇则重点掌握信息技术在研究性学习中的应用。考虑到初三课程的实际情况,我们没有严格按照课时来安排内容,而是用专题和案例的方式来组织材料,方便各校根据教学环境和课时情况灵活安排教学进度。我们在顺德教育信息中心为初三信息技术的学习开辟了专门的网站:网络探索(WebQuest),域名是。本课程的相关工具和范例都在这里提供,各章节的编者担任相应栏目的版主,随时欢迎广大师生前往交流。欢迎随时访问网络探究网站,了解网络学习的最新进展!2上篇用几何画板做数理实验同学们都喜欢物理和初三新开的化学,因为这两门课都有好多实验,那么数学就没有实验吗?有的。我们可以用特定的“数字化的实验室软件”来验证数学定律,探索数学规律。这样的软件现在国内外有很多,比较著名的有国内的“数学实验室”和国外的“几何画板”。鉴于初中的数学知识范围,我们可以先学习简单易学的“几何画板”,高中以后我们可以借助大型的“数学实验室”平台来完成更多的数学实验。说明:几何画板是一个著名的教学工具软件,网上可以下载其试用版本,国内已经有3.05版的汉化版本。本教材以3.0版为例编写。在我们的网络探索社区()的顺德信息技术教材专区中,有专门的几何画板学习讨论专栏,方便于同学们在网上交流学习心得,讨论学习问题。同时,本课程的案例程序也可以在该栏目找到。最新的几何画板试用版本也会放到这里供下载,请到自行下载安装。(安装过程请参考),在顺德市教育信息中心()的虚拟教研社区“培训大楼”中,也有几何画板专栏,专门供老师和有兴趣的同学讨论几何画板的高级使用问题。除了用几何画板进行大量的数学探索实验之外,与数学紧密相连的物理同样可以在几何画板上完成很多实验。我们将选取大家在初中数学和物理中遇到的一些典型问题为例子,利用几何画板来完成一些数学和物理实验。学完这些例子,相信同学们会熟练地应用几何画板,并且对学习过的或将要学的数学知识、物理知识有更进一步的认识。好啦,让我们开始吧。首先请下载安装好几何画板软件,打开几何画板,可以看到如下的窗口,各部分的功能如图所示:图1-0.1我们主要认识一下工具箱和状态栏,其它的功能在今后的学习过程中将学会使用。3案例一四人分饼有一块厚度均匀的三角形薄饼,现在要把它平均分给四个人,应该如何分?图1-1.1思路:这个问题在数学上就是如何把一个三角形分成面积相等的四部分。方案一:画三角形的三条中位线,分三角形所成的四部分面积相等,(其实四个三角形全等)。如图1-1.2。图1-1.2方案二:四等分三角形的任意一边,由等底等高的三角形面积相等,可以得出四部分面积相等,如图1-1.3。图1-1.3用几何画板验证:第一步:打开几何画板程序,这时出现一个新绘图文件。说明:如果几何画板程序已经打开,只要由菜单“文件”“新绘图”,也可以新建一个绘图文件。第二步:(1)在工具箱中选取“画线段”工具;(2)在工作区中按住鼠标左键拖动,画出一条线段。如图1-1.4。注意:在几何画板中,点用一个空心的圈表示。图1-1.4第三步:(1)选取“文本”工具;(2)在画好的点上单击左键,可以标出两点的标签,如图1-1.5:注意:如果再点一次,又可以隐藏标签,如果想改标签为其它字母,可以这样做:用“文本”工具双击显示的标签,在弹出的对话框中进行修改,(本例中我们不做修改)。如图1-1.6AB图1-1.54图1-1.6在后面的操作中,请观察图形,根据需要标出点或线的标签,不再一一说明第四步:(1)再次选取“画线段”工具,移动鼠标与点A重合,按左键拖动画出线段AC;(2)画线段BC,标出标签C,如图1-1.7。注意:在熟悉后,可以先画好首尾相接的三条线段后再标上标签更方便。ABC图1-1.7第五步:(1)用“选择”工具单击线段AB,这时线段上出现两个正方形的黑块,表示线段处于被选取状态;(2)由菜单“作图”“中点”,画出线段AB的中点,标上标签。得如图1-1.8。注意:如果被选取的是点,点的外面会有一个粗黑圆圈。在几何画板中,选取线段是不包括它的两个端点的,以后的问题都是这样,如果不小心多选了某个对象,可以按Shift键后用左键再次单击该对象取消选取。ABCD图1-1.8第六步:用同样的方法画出其它两边的中点。得如图1-1.9。技巧:最快的方法是:按住Shift不放,用“选择”工具分别点击三条线段,可以同时选取这三条线段,再由“作图”“画中点”(或按快捷键Ctrl+M),就可以同时画好三条边的中点。ABCDEF图1-1.9第七步:用“画线段”工具连结DE、EF、FD,得如图1-1.10:技巧:画线段的另一方法,在保证画线工具出现的是“画线段”按钮(不必选取)的前提下。选取两点后,由菜单“作图”“画线段”,(或按快捷键Ctrl+L),可以画出连结两点的线段。本例最快的做法:1、选取“画点”工具,按住Shift键不放在工作区中画三个点,这时三个顶点都保持选取状态2、按Ctrl+L,可以同时画出三条边并且三边同时被选取;ABCDEF图1-1.1053、按Ctrl+M,可以同时画出三边中点且三中点同时被选取;4、按Ctrl+L,可以同时画出小三角形三条边,标上标签即可。第八步:(1)按住Shift键不放,用“选择“工具选取点A、D、F;(2)由菜单“作图”“多边形内部”填充多边形内部;(3)保持内部的选取状态,由菜单“度量”“面积”,可以量出ADF的面积,如图1-1.11。ABCDEF面积ADF=0.77cm2图1-1.11第九步:(1)用同样的方法,填充并度量三角形BDE、ECF、DEF;(2)选取DEF的内部,由菜单“显示”“颜色”,选择其它颜色,如蓝色,得到如图1-1.12。ABCDEF面积ADF=0.77cm2面积DBE=0.77cm2面积ECF=0.77cm2面积DEF=0.77cm2图1-1.2注意:在制作过程中,要经常保存文件,以免因意外原因造成文件丢失,以下每一个例子都是这样,不再加以说明。归纳结论:拖动顶点A、B、C中的任一个,可以改变三角形的大小和形状,请观察不同情况下,四部分的面积是否总是相等?这样做可以完成分饼的任务吗?说明:这是通过实验来验证数学规律,不能保证结论一定是正确,一般来说,有一些结果经过了人类的长期实践,大家都公认了它的正确性,这时会把这个结论作为公理直接使用;而大多数情况下,实验得到的结果仍然需要进行推理证明。那么,实验有什么用呢?实验可以帮助我们认识规律,更容易接受知识,并且常常可以让我们找到解决问题的方向。如有问题,请到几何画板分版,下载案例一供参考。练习:1、对于方案二,四等分面积的问题就转化为四等分线段的问题,四等分线段可以用哪些方法?2、为了方便在改变等分的份数(例如要分成五份)时方法仍然能用,这里介绍利用平行线等分线段的方法把一条线段四等分。第一步:(1)选取“画射线”工具;(2)移动鼠标到与点A重合,按住左键拖动,画出一条以点A为端点的射线AD,得如图1-1.13。ABCD图1-1.136第二步:(1)选取“画点”工具,移动鼠标到射线AD上,在靠近点A处单击画出一个点E,得如图1-1.14;(2)按住Shift键不放,用“选择”工具,依次选取点A、E,由菜单“变换”“标记向量A-E”。说明:标记了一个向量后,可以在后面的平移变换中按这个向量来平移,保证出现若干段相等的线段,标记向量时,一定要注意选选择点的先后顺序。EABCD图1-1.14第三步:(1)用“选择”工具选取点E,由菜单“变换”“平移…”,在弹出的对话框中点“确定”即可得一点E’;(2)选取E’,做同样的操作可以得E’’,……,这样做下去,直到得到你想要的若干段相等的线段,这里是四段,如图1-1.15。E'''E''DABCEE'图1-1.15第四步:(1)连结BE’’’;(2)同时选取线段BE’’’、点E、E’、E’’,由菜单“作图”“平行线”,画出了一组平行线,如图1-1.16。ABCDEE'E''E'''图1-1.16第五步:(1)用“选择”工具单击平行线和AB相交处,得到三个四等分点;(2)选取所有平行线、射线AD及AD上的点(除A外),由菜单“显示”“隐藏对象”,可以隐藏制作过程中的辅助线。得如图1-1.17。以下只要连结点C和三个四等分点就行了,……注意:在最后结果中不需要看到的对象,一般是把它隐藏,如果你选取后删去了它,你会发现你要的四等分点也会消失,这是因为这些点是受辅助线控制的,隐藏的对象只是看不到,但它仍然起作用。隐藏和删除是不同的。如有问题,请到几何画板分版,下载案例一的练习供参考。ABC图1-1.173、自己比较一下这两种方法,在只需要四等分的情况下,哪种方法方便?,在需要其它等分的情况下,7哪种方法更具有一般性?案例二三角形的内角和现有一块三角形的木板,用来制作一个半圆形的木盖,请设计一个浪费比较小并且便于施工的方案。图1-2.1思路:以三角形较短一边的一半为半径,以三个顶点为圆心画弧,得到三个扇形后拼成半圆,如图1-2.2:图1-2.2那么,如何知道拼成的一定是一个半圆呢?下面用几何画板做一个实验来说明。方案:画一个三角形;量三个内角的度数;用几何画板的计算功能计算三个内角的和。如果对于任意的三角形,总有内角和是1800,那么说明拼成的一定是一个半圆形。用几何画板验证:第一步:新建一个几何画板绘图文件。画出三角形ABC第二步:(1)选取“选择”工具,按住Shift不放,依次选取点B、A、C;(2)由菜单中的“度量”“角度”,量出∠BAC的度数,用同样的方法度量其它两个角。如图1-2.3说明:由于每个人画的图不同,度数不一定和图1-2.3一样)。注意:选一个角的关键是角的顶点要第二个选。ABCBAC=45.0?ABC=74.6?ACB=60.4?图1-2.3第三步:由菜单“度量”“计算”弹出一个计算器,依次点击“∠BAC=…”、“+”、“∠ABC=…”“+”、“∠ACB=…”、“确定”,如图1-2.4。说明:“∠BAC=…”在本例中是“∠BAC=45.00”,这里用省略号表示,是因为每个人画的图不同,量出的度数有可能不同,以后类似的问题都这样来表示。技巧:弹出计算器的方法有:(1)由菜单“度量”“计算”;(2)双击工作区中的任一度量值,如“∠BAC=…”;(3)在工作区中击鼠标右键,由“度量”“计算”。ABCBAC=45.0?ABC=74.6?ACB=60.4?BAC+ABC+ACB=180.0?图1-2.48归纳结论:请按要求操作后填写下表:序号操作现象三个角的和等于1观察∠BAC=______∠ABC=______∠ACB=______2用鼠标拖动其中一个顶点改变三角形变成钝角三角形∠BAC=______∠ABC=______∠ACB=______3用鼠标拖动其中一个顶点改变三角形变成直角三角形∠BAC=______∠ABC=______∠ACB=______4用鼠标拖动其中一个顶点任意改变三角形的形状三个内角的和总是结论三角形的内角和总是________如有问题,请到几何画板分版,下载案例二供参考。练习:1、自己画一个凸四边形,度量它的内角,计算内角和,验证凸四边形的内角和是3600。如有问题,请到几何画板分版,下载案例二练习1供参考。2、用“选择”工具同时选取点A、B,由菜单“度量”“距离”,可以度量出线段AB的长度,请你用上面所学的知识验证
本文标题:《几何画板》教程――从入门到精通
链接地址:https://www.777doc.com/doc-3959420 .html