您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 2013届高考数学(理)一轮复习课件:第八篇立体几何第7讲立体几何中的向量方法(一)
第7讲立体几何中的向量方法(一)【2013年高考会这样考】1.通过线线、线面、面面关系考查空间向量的坐标运算.2.能用向量方法证明直线和平面位置关系的一些定理.3.利用空间向量求空间距离.【复习指导】本讲复习中要掌握空间向量的坐标表示和坐标运算,会找直线的方向向量和平面的法向量,并通过它们研究线面关系,会用向量法求空间距离.基础梳理1.空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a±b=(a1±b1,a2±b2,a3±b3);②λa=(λa1,λa2,λa3);③a·b=a1b1+a2b2+a3b3.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a=λb⇔,,,a⊥b⇔⇔(a,b均为非零向量).a1=λb1a2=λb2a3=λb3(λ∈R)a·b=0a1b1+a2b2+a3b3=0(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=a·a=a21+a22+a23,cos〈a,b〉=a·b|a||b|=a1b1+a2b2+a3b3a21+a22+a23·b21+b22+b23.设A(a1,b1,c1),B(a2,b2,c2),则dAB=|AB→|=a2-a12+b2-b12+c2-c12.2.立体几何中的向量方法(1)直线的方向向量与平面的法向量的确定①直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称AB→为直线l的方向向量,与AB→平行的任意也是直线l的方向向量.②平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为n·a=0,n·b=0.非零向量(2)用向量证明空间中的平行关系①设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔.②设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l⊂α⇔.③设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔.④设平面α和β的法向量分别为u1,u2,则α∥β⇔.v1∥v2存在两个实数x,y,使v=xv1+yv2v⊥uu1∥u2(3)用向量证明空间中的垂直关系①设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔⇔.②设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔.③设平面α和β的法向量分别为u1和u2,则α⊥β⇔⇔.(4)点面距的求法如图,设AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离d=|AB→·n||n|.v1⊥v2v1·v2=0v∥uu1⊥u2u1·u2=0一种思想向量是既有大小又有方向的量,而用坐标表示向量是对共线向量定理、共面向量定理和空间向量基本定理的进一步深化和规范,是对向量大小和方向的量化:(1)以原点为起点的向量,其终点坐标即向量坐标;(2)向量坐标等于向量的终点坐标减去其起点坐标.得到向量坐标后,可通过向量的坐标运算解决平行、垂直等位置关系,计算空间成角和距离等问题.三种方法主要利用直线的方向向量和平面的法向量解决下列问题:(1)平行直线与直线平行直线与平面平行平面与平面平行(2)垂直直线与直线垂直直线与平面垂直平面与平面垂直(3)点到平面的距离求点到平面距离是向量数量积运算(求投影)的具体应用,也是求异面直线之间距离,直线与平面距离和平面与平面距离的基础.双基自测1.两不重合直线l1和l2的方向向量分别为v1=(1,0,-1),v2=(-2,0,2),则l1与l2的位置关系是().A.平行B.相交C.垂直D.不确定解析∵v2=-2v1,∴v1∥v2.答案A2.已知平面α内有一个点M(1,-1,2),平面α的一个法向量是n=(6,-3,6),则下列点P中在平面α内的是().A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)解析∵n=(6,-3,6)是平面α的法向量,∴n⊥MP→,在选项A中,MP→=(1,4,1),∴n·MP→=0.答案A3.(2011·唐山月考)已知点A,B,C∈平面α,点P∉α,则AP→·AB→=0,且AP→·AC→=0是AP→·BC→=0的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由AP→·AB→=0AP→·AC→=0,得AP→·(AB→-AC→)=0,即AP→·CB→=0,亦即AP→·BC→=0,反之,若AP→·BC→=0,则AP→·(AC→-AB→)=0⇒AP→·AB→=AP→·AC→,未必等于0.答案A4.(人教A版教材习题改编)已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),则下列结论正确的是().A.a∥c,b∥cB.a∥b,a⊥cC.a∥c,a⊥bD.以上都不对解析∵c=(-4,-6,2)=2(-2,-3,1)=2a,∴a∥c,又a·b=-2×2+(-3)×0+1×4=0,∴a⊥b.答案C5.(2012·舟山调研)已知AB→=(2,2,1),AC→=(4,5,3),则平面ABC的单位法向量是________.解析设平面ABC的法向量n=(x,y,z).则AB→·n=0,AC→·n=0,即2x+2y+z=0,4x+5y+3z=0.令z=1,得x=12,y=-1,∴n=12,-1,1,∴平面ABC的单位法向量为±n|n|=±13,-23,23.答案±13,-23,23考向一利用空间向量证明平行问题【例1】►如图所示,在正方体ABCDA1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.[审题视点]直接用线面平行定理不易证明,考虑用向量方法证明.证明法一如图所示,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为1,则M0,1,12,N12,1,1,D(0,0,0),A1(1,0,1),B(1,1,0),于是MN→=12,0,12,设平面A1BD的法向量是n=(x,y,z).则n·DA1→=0,且n·DB→=0,得x+z=0,x+y=0.取x=1,得y=-1,z=-1.∴n=(1,-1,-1).又MN→·n=12,0,12·(1,-1,-1)=0,∴MN→⊥n,又MN⊄平面A1BD,∴MN∥平面A1BD.法二MN→=C1N→-C1M→=12C1B1→-12C1C→=12(D1A1→-D1D→)=12DA1→,∴MN→∥DA1→,又∵MN与DA1不共线,∴MN∥DA1,又∵MN⊄平面A1BD,A1D⊂平面A1BD,∴MN∥平面A1BD.证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,然后说明直线在平面外即可.这样就把几何的证明问题转化为了数量的计算问题.【训练1】如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.求证:PB∥平面EFG.证明∵平面PAD⊥平面ABCD且ABCD为正方形,∴AB、AP、AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0)、B(2,0,0)、C(2,2,0)、D(0,2,0)、P(0,0,2)、E(0,0,1)、F(0,1,1)、G(1,2,0).∴PB→=(2,0,-2),FE→=(0,-1,0),FG→=(1,1,-1),设PB→=sFE→+tFG→,即(2,0,-2)=s(0,-1,0)+t(1,1,-1),∴t=2,t-s=0,-t=-2,解得s=t=2.∴PB→=2FE→+2FG→,又∵FE→与FG→不共线,∴PB→、FE→与FG→共面.∵PB⊄平面EFG,∴PB∥平面EFG.考向二利用空间向量证明垂直问题【例2】►如图所示,在棱长为1的正方体OABCO1A1B1C1中,E,F分别是棱AB,BC上的动点,且AE=BF=x,其中0≤x≤1,以O为原点建立空间直角坐标系Oxyz.(1)求证A1F⊥C1E;(2)若A1,E,F,C1四点共面求证:A1F→=12A1C1→+A1E→.[审题视点]本题已建好空间直角坐标系,故可用向量法求解,要注意找准点的坐标.证明(1)由已知条件A1(1,0,1),F(1-x,1,0),C1(0,1,1),E(1,x,0),A1F→=(-x,1,-1),C1E→=(1,x-1,-1),则A1F→·C1E→=-x+(x-1)+1=0,∴A1F→⊥C1E→,即A1F⊥C1E.(2)A1F→=(-x,1,-1),A1C1→=(-1,1,0),A1E→=(0,x,-1),设A1F→=λA1C1→+μA1E→,-x=-λ,1=λ+μx,-1=-μ,解得λ=12,μ=1.∴A1F→=12A1C1→+A1E→.证明直线与直线垂直,只需要证明两条直线的方向向量垂直,而直线与平面垂直,平面与平面垂直可转化为直线与直线垂直证明.【训练2】如图所示,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)AE⊥CD;(2)PD⊥平面ABE.证明AB、AD、AP两两垂直,建立如图所示的空间直角坐标系,设PA=AB=BC=1,则P(0,0,1).(1)∵∠ABC=60°,△ABC为正三角形.∴C12,32,0,E14,34,12.设D(0,y,0),由AC⊥CD,得AC→·CD→=0,即y=233,则D0,233,0,∴CD→=-12,36,0.又AE→=14,34,12,∴AE→·CD→=-12×14+36×34=0,∴AE→⊥CD→,即AE⊥CD.(2)法一∵P(0,0,1),∴PD→=0,233,-1.又AE→·PD→=34×233+12×(-1)=0,∴PD→⊥AE→,即PD⊥AE.AB→=(1,0,0),∴PD→·AB→=0,∴PD⊥AB,又AB∩AE=A,∴PD⊥平面AEB.法二AB→=(1,0,0),AE→=14,34,12,设平面ABE的一个法向量为n=(x,y,z),则x=0,14x+34y+12z=0,令y=2,则z=-3,∴n=(0,2,-3).∵PD→=0,233,-1,显然PD→=33n.∵PD→∥n,∴PD→⊥平面ABE,即PD⊥平面ABE.考向三利用向量求空间距离【例3】►在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=23,M、N分别为AB、SB的中点,如图所示,求点B到平面CMN的距离.[审题视点]考虑用向量法求距离,距离公式不要记错.解取AC的中点O,连接OS、OB.∵SA=SC,AB=BC,∴AC⊥SO,AC⊥BO.∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC,∴SO⊥平面ABC,∴SO⊥BO.如图所示,建立空间直角坐标系Oxyz,则B(0,23,0),C(-2,0,0),S(0,0,22),M(1,3,0),N(0,3,2).∴CM→=(3,3,0),MN→=(-1,0,2),MB→=(-1,3,0).设n=(x,y,z)为平面CMN的一个法向量,则CM→·n=3x+3y=0,MN→·n=-x+2z=0,取z=1,则x=2,y=-6,∴n=(2,-6,1).∴点B到平面CMN的距离d=|n·MB→||n|=423.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH⊥平面CMN于H.由BH→=BM→+MH→及BH→·n=n·BM→,得|BH→·n|=|n·BM→|=|BH→|·|n|,所以|
本文标题:2013届高考数学(理)一轮复习课件:第八篇立体几何第7讲立体几何中的向量方法(一)
链接地址:https://www.777doc.com/doc-3980611 .html