您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 高中数学选修2-3《排列组合的常见题型及其解法》
1排列组合的常见题型及其解法排列、组合的概念具有广泛的实际意义,解决排列、组合问题,关键要搞清楚是否与元素的顺序有关。复杂的排列、组合问题往往是对元素或位置进行限制,因此掌握一些基本的排列、组合问题的类型与解法对学好这部分知识很重要。一.特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。例1.6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有A41种站法;第二步再让其余的5人站在其他5个位置上,有A55种站法,故站法共有:AA4155=480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有A52种;第二步再让剩余的4个人(含甲)站在中间4个位置,有A44种,故站法共有:AA5244480(种)二.相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。例2.5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有A66种,然后女生内部再进行排列,有A33种,所以排法共有:AA66334320(种)。三.相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。例3.7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有A44种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有A53种,所以排法共有:AA44531440(种)四.定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有Ann种,mmn()个元素的全排列有Amm种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有AAnnmm种排列方法。例4.由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?2解:不考虑限制条件,组成的六位数有AA5155种,其中个位与十位上的数字一定,所以所求的六位数有:AAA515522300(个)五.分排问题用直排法对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。例5.9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有A99种。六.复杂问题用排除法对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。在应用此法时要注意做到不重不漏。例6.四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有()A.150种B.147种C.144种D.141种解:从10个点中任取4个点有C104种取法,其中4点共面的情况有三类。第一类,取出的4个点位于四面体的同一个面内,有464C种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。以上三类情况不合要求应减掉,所以不同的取法共有:CC10464463141(种)。七.多元问题用分类法按题目条件,把符合条件的排列、组合问题分成互不重复的若干类,分别计算,最后计算总数。例7.已知直线axbyc0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。解:设倾斜角为,由为锐角,得tanab0,即a,b异号。(1)若c=0,a,b各有3种取法,排除2个重复(330xy,220xy,xy0),故有:3×3-2=7(条)。(2)若c0,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任意两条直线均不相同,故这样的直线有:3×3×4=36(条)。从而符合要求的直线共有:7+36=43(条)八.排列、组合综合问题用先选后排的策略处理排列、组合综合性问题一般是先选元素,后排列。3例8.将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,1),(1,2,1),共有:CCCA422111226(种),第二步将这三组教师分派到3种中学任教有A33种方法。由分步计数原理得不同的分派方案共有:CCCAA422111223336(种)。因此共有36种方案。九.隔板模型法常用于解决整数分解型排列、组合的问题。例9.有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?解:6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,将5个隔板插入9个空,每一种插法,对应一种分配方案,故方案有:C95126(种)
本文标题:高中数学选修2-3《排列组合的常见题型及其解法》
链接地址:https://www.777doc.com/doc-3987612 .html