您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北师大版八年级下册数学[角的平分线的性质(基础)知识点整理及重点题型梳理]
精品文档用心整理资料来源于网络仅供免费交流使用北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习角的平分线的性质(基础)【学习目标】1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.3.熟练运用角的平分线的性质解决问题.【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图精品文档用心整理资料来源于网络仅供免费交流使用(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC的内心为1P,旁心为234,,PPP,这四个点到△ABC三边所在直线距离相等.【典型例题】类型一、角的平分线的性质1.(2015春•启东市校级月考)如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.【思路点拨】根据角平分线的定义可得∠ABD=∠CBD,然后利用“边角边”证明△ABD和△CBD全等,根据全等三角形对应角相等可得∠ADB=∠CDB,然后根据角平分线上的点到角的两边的距离相等证明即可.【答案与解析】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,精品文档用心整理资料来源于网络仅供免费交流使用∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.【总结升华】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB是解题的关键.2、(2016春•潜江校级期中)如图在△ABC中∠C=90°,AC=BC,AD平分∠CAB,DE⊥AB于E,若AB=6cm,求△DEB的周长.【思路点拨】利用角平分线的性质求得CD=DE,然后利用线段中的等长来计算△DEB的周长.【答案与解析】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,∴△CAD≌△EAD(HL)∴AC=AE,∵AC=BC,∴∠B=45°,∴BE=DE,∴△DEB的周长=BE+DE+BD=BE+CD+BD=BE+BC=BE+AC=BE+AE=AB=6cm.【总结升华】将△DEB的周长用相等的线段代换是关键.举一反三:【变式】已知:如图,AD是△ABC的角平分线,且:3:2ABAC,则△ABD与△ACD的面积之比为()A.3:2B.3:2C.2:3D.2:3【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵:3:2ABAC,则△ABD与△ACD的面积之比为3:2.精品文档用心整理资料来源于网络仅供免费交流使用3、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.【思路点拨】利用角平分线的性质证明PD=PE,再根据“HL”定理证明△OPD≌△OPE,从而得到∠OPD=∠OPE,∠DPF=∠EPF.再证明△DPF≌△EPF,得到结论.【答案与解析】解:DF=EF.理由如下:∵OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,∴PD=PE,由HL定理易证△OPD≌△OPE,∴∠OPD=∠OPE,∴∠DPF=∠EPF.在△DPF与△EPF中,PDPEDPFEPFPFPF,∴△DPF≌△EPF,∴DF=EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定4、已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF.求证:AF为∠BAC的平分线.【答案与解析】证明:∵CE⊥AB,BD⊥AC(已知)∴∠CDF=∠BEF=90°精品文档用心整理资料来源于网络仅供免费交流使用∵∠DFC=∠BFE(对顶角相等)∵BF=CF(已知)∴△DFC≌△EFB(AAS)∴DF=EF(全等三角形对应边相等)∵FE⊥AB,FD⊥AC(已知)∴点F在∠BAC的平分线上(到一个角的两边距离相等的点在这个角的平分线上)即AF为∠BAC的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”的条件.如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性.举一反三:【变式】已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.【答案】证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.
本文标题:北师大版八年级下册数学[角的平分线的性质(基础)知识点整理及重点题型梳理]
链接地址:https://www.777doc.com/doc-3987916 .html