您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 实际问题与一元二次方程(面积问题)
面积问题列方程解应用题的一般步骤是什么?知识回顾审:设:列:解:答:审题设未知数列方程解方程验:1、“传销”是被我国法律明令禁止的一种商品销售方式。若有一名不法分子为传销某种商品发展了若干“下线”,每名“下线”又发展了若干“子下线”,这样共有121人在进行“传销”,问平均每人发展了几名“下线”?2.为了迎接明年的伦敦奥运会,某校将组织一次学生篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排21场比赛,有多少支球队参加比赛?3、某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是多少?小结类似地这种增长率的问题在实际生活普遍存在,有一定的模式:若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为bxan)1(其中增长取+,降低取-这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求.因为一元二次方程的解有可能不符合题意,如:参赛的队伍不可能是负数,降低率不能大于100%等……因此,解出方程的根后,一定要进行检验.实际问题与一元二次方程面积问题4.如图,是长方形鸡场平面示意图,一边靠墙(墙的长度不限),另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别是多少米?探究1练习:1.如图,用长为18m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.要围成苗圃的面积为81m2,应该怎么设计?解:设苗圃的一边长为xm,则另一边长为(18-x)m,得81)18(xx化简得,081182xx0)9(2x答:应围成一个边长为9米的正方形.921xx如图:有长30米的篱笆,一面利用墙(墙长16米),围成中间隔有一道篱笆的方形花圃,如果要围成面积为72平方米的花圃,长宽各为多少米?拓展练习:宽长墙探究2如图,是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米?分析:我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路)解:设道路宽为x米,得570)220)(232(xx035362xx0)1)(35(xx1,3521xx其中的x=35超出了原矩形的宽,应舍去.答:道路的宽为1米.32-2X20-2X联系中考:(2011上海)如图,长方形ABCD,AB=15m,BC=20m,四周外围环绕着宽度相等的小路,已知小路的面积为246m2,求小路的宽度.ABCD解:设小路宽为x米,则2015246)215)(220(xx化简得,01233522xx0)412)(3(xx不合题意,舍去)(241,321xx答:小路的宽为3米.3.如图,在长为40米,宽为22米的矩形地面上,修筑两条同样宽的互相垂直的道路,余下的铺上草坪,要使草坪的面积为760平方米,道路的宽应为多少?40米22米例3、求截去的正方形的边长•用一块长28cm、宽20cm的长方形纸片,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体盒子,使它的底面积为180cm2,为了有效地利用材料,求截去的小正方形的边长是多少cm?一路下来,我们结识了很多新知识,也有了很多的新想法。你能谈谈自己的收获吗?说一说,让大家一起来分享。练习1:用一根长22厘米的铁丝,能否折成一个面积是30厘米的矩形?能否折成一个面积为32厘米的矩形?说明理由。2:在一块长80米,宽60米的运动场外围修筑了一条宽度相等的跑道,这条跑道的面积是1500平方米,求这条跑道的宽度。4、如图,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(两条纵向,一条横向,横向与纵向相互垂直),把耕地分成大小相等的六块试验地,要使试验地面积为570m²,问道路的宽为多少?列一元二次方程解应题补充练习:18米2米(98年北京市崇文区中考题)如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米.求鸡场的长和宽各多少米?例4:建造一个池底为正方形,深度为2.5m的长方体无盖蓄水池,建造池壁的单价是120元/m2,建造池底的单价是240元/m2,总造价是8640元,求池底的边长.分析:池底的造价+池壁的造价=总造价解:设池底的边长是xm.根据题意得:86404521202402xx.解方程得:4921xx,∵池底的边长不能为负数,∴取x=4答:池底的边长是4m.5、在长方形钢片上冲去一个长方形,制成一个四周宽相等的长方形框。已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2,求这个长方形框的框边宽。XX30cm解:设长方形框的边宽为xcm,依题意,得30×20–(30–2x)(20–2x)=400整理得x2–25+100=0得x1=20,x2=5当=20时,20-2x=-20(舍去);当x=5时,20-2x=10答:这个长方形框的框边宽为5cm练习、建造成一个长方体形的水池,原计划水池深3米,水池周围为1400米,经过研讨,修改原方案,要把长与宽两边都增加原方案中的宽的2倍,于是新方案的水池容积为270万米3,求原来方案的水池的长与宽各是多少米?700--xx3700-x+2xx+2xx原方案新方案列一元二次方程解应题6、放铅笔的V形槽如图,每往上一层可以多放一支铅笔.现有190支铅笔,则要放几层?解:要放x层,则每一层放(1+x)支铅笔.得x(1+x)=190×2X+X-380=0解得X1=19,X2=-20(不合题意)答:要放19层.2课本49页第9题,53页第8题探究•要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的长方形,如果要使四周的彩色边衬所占封面面积的四分之一,上下边衬等宽,左右边衬等宽,如何设计四周边衬的宽度?
本文标题:实际问题与一元二次方程(面积问题)
链接地址:https://www.777doc.com/doc-4006656 .html