您好,欢迎访问三七文档
ProbabilisticfiniteelementanalysisusingANSYSStefanReha,*,Jean-DanielBeleyb,SiddharthaMukherjeeb,EngHuiKhorbaUniversityofAppliedSciences,BerlinerTor21,D-20099Hamburg,GermanybANSYSInc.,275TechnologyDrive,Canonsburg,PA15317,USAAvailableonline24June2005AbstractDrivenbystiffcompetition,industrialmanufacturersfindthemselvesundergrowingpressuretooptimizeapparentlyconflictingtechnicalandfinancialgoalsinanenvironmentofeverincreasingproductcomplex-ity.Inaddition,thischallengeistobemetundertheexistenceofrandomnessanduncertainty,whichtheproductsaresubjectedto.Consequently,findingtherightbalancebetweenconflictinggoalsundertheexis-tenceofuncertaintiesrequirestheuseofprobabilistictools.Toachievethis,ANSYSInc.hasreleasedtwotools,namelytheANSYSProbabilisticDesignSystemandtheANSYSDesignXplorer.Thispaperdescribestheproblemsthatcanbeaddressed,theunderlyingalgorithmsimplementedandmethodologiesofthesemethodsinbothtools.AspecialtopicofthepaperisthediscussionandexplanationoftheVar-iationalTechnology,whichisofferedinbothtools.VariationalTechnologyisahighlyefficientmethodtoprovideaccurate,high-orderresponsesurfacesbasedonasinglefiniteelementanalysis.Thecapabilities,strengthsandweaknessesofthesemethodsarediscussed.Thepossibilitytoreducetheexecutiontimeusingparallelcomputingisdiscussed.Differentmeasurestoassesstheaccuracyandvalidityoftheresultsobtainedwiththedifferentprobabilisticmethodsaregivenspecialattention.Variouscapabilitiestopost-processtheprobabilisticresultsarementioned.Themethodsandthecapabilitiestooptimizemultipleandpossiblyconflictinggoalsarehighlighted.Finally,theapplicationofthesoftwareisillustratedusingvariousindustrialexampleproblems.2005ElsevierLtd.Allrightsreserved.Keywords:Uncertainty;Reliability;DesignforSixSigma;Reliability-basedoptimization;Robustdesign0167-4730/$-seefrontmatter2005ElsevierLtd.Allrightsreserved.doi:10.1016/j.strusafe.2005.03.010*Correspondingauthor.Tel.:+4940428758715;fax:+4940428758799.E-mailaddresses:reh@rzbt.haw-hamburg.de(S.Reh),jean-daniel.beley@ansys.com(J.-D.Beley),siddhartha.mukherjee@ansys.com(S.Mukherjee),samuel.khor@ansys.com(E.H.Khor).(2006)17–43STRUCTURALSAFETY1.IntroductionSincequiteanumberofyears,methodsandtoolstoquantifythereliabilityandqualityofmechanicalproductshavereceivedanever-growinginterestfromindustryaswellasacademia.Dri-venbytheneedtosimultaneouslyreducecosts(manufacturingcosts,warrantycosts,etc.),reducetime-to-market,improveproductqualityandproductreliability,industrialmanufacturersfindthemselveschallengedtooptimizeapparentlyconflictingtechnicalandfinancialgoalsinanenvi-ronmentofeverincreasingproductcomplexity.Inaddition,thischallengeistobemetundertheexistenceofrandomnessanduncertainty,whichtheproductsaresubjectedto,sincetheyareman-ufacturedandoperatedunderreal-lifeconditions.Naturally,optimizationisonlypossibleiftheoptimizationgoalsaswellaspossibleconstraintscanbequantified.Consequently,findingtherightbalancebetweenconflictinggoalsundertheexistenceofuncertaintiesrequirestheuseofprobabi-listictools.Inthiscontext,thefollowinganalysistypesaretypicallyusedtoaddressthisquestion:Deterministicanalysis.Adeterministicanalysisisthetransformationfunctionrepresentingtherelationshipbetweentheinputvariablesinfluencingthebehaviourofaproductandtheresultparameterscharacterizingtheproductbehaviour.Insimplecasestheresultparameterscanbeexpressedasananalyticalfunction,butinrealisticcasestheinput-outputrelationshipisonlygivenalgorithmicallyforexampleusingfiniteelementprogram.Uncertaintyanalysis.Iftheinputvariablesinfluencingthebehaviourofaproductareuncertain,i.e.aresubjectedtoscatter,thentheprimarytaskofanuncertaintyanalysisistoquantifyhowmuchtheresultparameterscharacterizingtheproductbehaviourareaffectedbythoseuncertainties.Reliabilityanalysis.Inordertoquantifythereliabilityofaproductitisusefultocalculatethefailureprobabilityornon-conformanceprobabilitydenotedwithPf.ThereliabilityPsistheprobabilitythattheproductwillsurviveorconformstocertainrequirements,withPs=1Pf.Reliability-basedoptimization.Asthenameimplies,reliability-basedoptimizationtriestoopti-mizethereliabilityorfailureprobability.Itshouldbenoted,thatimprovingthereliabilityoftenconflictswithothertechnicalandfinancialgoals.Hence,theoptimizationprocessshouldtrytoachieveareasonableandquantifiablebalancebetweenallgoals.Robustdesign.Engineeringproductsarebecomingmoreandmorecomplexandpronetotheeffectsofuncertainty[1].Robustdesigntriestooptimizethedesigntomakeitlesssensitivetounavoidableuncertainties,therebyreducingthevariabilityintheproductbehaviourandmakingitmorepredictable.Achievingthisisanoptimizationproblemusingtheresultsofaprobabilisticanalysisasgoalsandconstraintfunctions.Measurestoquantifyrobustness(orthelackthereof)areforexamplethestandarddeviationorcoefficientofvariation,kurtosis,sig-nal-to-noiseratios[2–4],Shannonsentropy[5]orthefailureprobabilityofparametersdescrib-ingthebehaviourofaproduct.DesignforSixSigma.TheexpressionSixSigmawasfirstdevisedbyMotorola[6]definingthatSixSigmaqualityisgivenifonlyabout3
本文标题:Probabilistic finite element analysis using ANSYS
链接地址:https://www.777doc.com/doc-4013298 .html