您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 光纤通信原理复习资料
第一章*激光的突出优点:为高度相干光;单色性好,波谱宽度窄;方向性极好;输出功率大。*模拟信号与数字信号模拟信号——信号幅度电平随时间连续变化。技术指标:传输带宽、传输信噪比(SNR)或传输载噪比(CNR)、非线性等。频域特征:带宽、中心频率、幅度及幅度范围等。数字信号——信号电平随时间周期呈离散分布。时域特征:信号的编码形式、幅度、脉宽以及上升与下降时间等。比特时间TB:每个码持续的时间。比特率B:每秒钟的比特数。B=1/TB问题1:将模拟信号转换成数字信号传输,对信道带宽的要求将增加许多倍。----解决方法:光纤具有巨大带宽资源问题2:宽带模拟信号的数模转换困难。----解决方法:光纤通信采用数字和模拟两种传输方案*直接调制:用电信号直接调制光源的驱动电流,使输出光随电信号变化而实现调制。优点:技术简单,成本较低,容易实现。缺点:调制速率较低,受激光器的频率特性限制。*间接调制:把激光的产生和调制分开,用独立的调制器调制激光器的输出光。优点:调制速率高。缺点:技术复杂,成本较高。使用场合:大容量的波分复用和相干通信系统。第二章*光纤的结构纤芯的作用——光波主要传输通道。包层的作用——为光的传输提供反射面和光隔离;提供一定的机械保护,使光纤的传输性能稳定。涂敷层的作用——保护光纤不受水汽的侵蚀和机械擦伤,同时增加光纤的柔韧性。*渐变性折射率光纤虽然沿光纤轴线传输路径最短,但轴线上折射率最大,光传播最慢。斜光线大部分路径在低折射率的介质中传播,虽然路径长,但传输快。通过合理设计折射率分布,不同入射角度入射的光线以相同的轴向速度在光纤中传输,同时到达输出端,即所有光线具有相同的空间周期,从而降低模间色散。*光纤中波动方程的解与模式光纤中的模式为波动方程的一个特定解。满足一定的边界条件,空间分布不随传播方向而发生变化。光纤中的模式分为:导模;泄漏模;辐射模。导模:也称为约束模式。经历全反射,被局限在光纤纤芯中的模式。泄漏模:部分约束于纤芯内,沿光纤传播时振幅会发生变化。功率由于连续辐射而发生衰减。辐射模:也称为折射模式。不发生全内反射,这种模式的光会传播到纤芯之外。光在波导表面发生折射,由于包层半径有限,从纤芯辐射出去的部分光被包层俘获,形成所谓的包层模。当纤芯模以及包层模同时沿光纤传播时,出现两种模式的耦合,引起纤芯模的功率损耗。光纤中的信号能量只能由导模携带。*光纤中波动方程的解与模式关系总结为:(1)每一个LP0n由HE1n导出。(2)每一个LP1n由TE0n、TM0n、HE2n导出。LP模式是传输模式在弱导条件下的近似解。若将HE、EH模式线性叠加,可以得到直角坐标系下的线偏振模LP模。(3)每一个LPmn由HEm+1,n和EHm-1,n导出。由于每一个HEmn和EHmn都有两个不同的偏振方向,则LP0n的简并度为2,LPmn的模式简并度为4。简并:不同的模式有不同的场结构,但如果它们具有相同(相近)的传输常数,就认为这些模式是简并的。归一化频率V越大,能够传播的模式数就越多:V值较高的光纤可以支持较多的模式,称为多模光纤。模式数目随V的减小快速减少。V=5,7个模式。当V小于某个值,除HE11模式外,所有模式被截止。只支持一个模式(基模)的光纤被称作单模光纤。*光纤中可传播的模式数M与V的关系:*双折射现象带来的影响:如果纤芯是理想圆柱形,这两个正交的模式将以相同的速度传播,并同时到达输出端。如果圆柱对称性出现了改变,这两个模式就会以不同的速度传播,导致脉冲展宽。偏振的不确定性对相干通信系统对信号的检测、接收将产生不良影响。*波导色散:产生原因:与光纤波导效应有关,取决于波导尺寸以及纤芯与包层的相对折射率差。单模光纤中,携带信息的光脉冲在纤芯和包层间分布:主要部分在纤芯中传输,剩余部分在包层中传播。纤芯和包层拥有不同折射率,两个部分以不同的速度传播。光被限制在一个拥有不同折射率的结构-纤芯和包层的组合中传播,脉冲会扩展。注意:即使光纤材料没有色散特性,波导色散也会发生。纯波导色散仅因为将光限制在一个特定的结构中而产生。波导色散与波长的关系:波长越长,模场半径越大,同时包层中所传播的总脉冲功率的分量就越大。脉冲的包层部分比纤芯部分传播更快,因为包层的折射率比纤芯的折射率要小。因此,波长越长,包层中的脉冲分量引起展宽就越大。*光纤的制备工艺气相氧化法:气相轴向沉积法(VAD)原理:石英玻璃微粒从喷灯口出来后沉积在一根石英玻璃棒横切端面上,玻璃棒同时作为输送杆。在输送杆沿轴向向上移动过程中,一根疏松预制棒即沿轴向生成。输送棒在向上移动的同时也匀速旋转,以保证沉积的预制棒具有轴对称性。疏松预制棒在向上移动的过程中经过一环形加热熔融区后即生成光纤预制棒。优点:1.预制棒不再具有空洞2.预制棒可以任意长3.沉积室和熔融室紧密相连,可以保证制作环境清洁4.单模光纤所含的OH-较低,因此损耗较低在0.2~0.4dB/km。*光纤损耗的测量剪断法:优点:准确度高,测量设备简单。缺点:测量方法具有破坏性,不适用于在线测试和测量已建成的光纤线路。插入法:优点:可以根据工作环境,灵活运用。缺点:测量中需要光纤多次连接替换,测量精度较低,需要修正连接损耗。后向散射法:原理:光源发出一个窄脉冲光信号,通过光纤耦合器注入到光纤中。瑞利散射光中有一部分传输方向与入射光相反,这部分后向散射光通过耦合器进入光电探测器,经过处理得到后向散射测量曲线。光时域反射仪(OTDR):是利用后向散射法的原理设计的测量仪器。用途:测量光纤损耗系数、光纤长度、连接器/接头损耗。观察光纤沿线的均匀性,确定故障点的位置。优点:采用单端输入和输出,不破坏光纤,使用方便。第三章*半导体光电器件的工作原理:半导体光源:在注入电流作用下,电子从低能态跃迁到高能态,形成粒子数反转,电子再从高能态跃迁到低能态产生光子而发光。半导体光检测器:注入光作用下,电子从低能态跃迁到高能态,并在外加电场作用下形成光生电流。半导体光源和光检测器优点:体积小;效率高;可靠性高;工作波长与光纤低损耗窗口相对应;便于光纤耦合;调制速率高。*同质结和双异质结:同质结:有源区对载流子和光子的限制作用很弱;载流子复合范围宽,载流子浓度低,发光效率不高。异质结:带隙差形成的势垒将电子和空穴限制在激活区复合发光;折射率使光场(光子)有效地限制在激活区。同质结:几乎所有直接带隙半导体材料都可以制成同质结,通过自发辐射发光;异质结:要求:为了减小晶格缺陷,两种材料的晶格常数应匹配。方法:通过将二元半导体材料的某些原子用其他原子代替,制成三元或四元半导体材料。晶格常数近似相等,带隙能量不同结果:不同半导体材料构成的光源和光检测器具有不同发光波长和检波波长。*LEDLED主要用于短途、低速率的本地网。*LD宽面半导体激光器:结构最简单的LD:一个薄的带隙能量较低的有源层夹在带隙能量较高的P型和N型限制层中间。特点:正向电流沿整个结平面注入;光子和载流子在垂直方向受到限制,但是在平行方向没有受到限制,输出椭圆形光斑;缺点:电流在大面积注入,阈值电流高。且随沿激光器整个宽度上都存在光辐射,因此损耗大,且随电流发生不能控制的变化。LD的温度特性:阈值电流随温度按指数增长(阈值电流和输出功率对温度很敏感,实际应用中采用热电制冷器对LD冷却和温度控制);发射波长随着温度发生变化;(原因:温度的变化改变材料的带隙和折射率。结果:随着温度的增加,激光器的输出波长向长波长方向漂移。)LD调制特性:激光模式与光场分布:LD的横模:是一种稳定的电磁场分布,为激光器输出能量在横向上的稳定的分布。LD基模的近场和远场分布均可拟合为高斯分布。近场分布------通常为横椭圆形状。远场分布----是激光器发散角的一种度量,对激光与光纤的耦合有重要影响。纵模特性:m不同,不同的频率对应不同的纵向模式,*PN光电二极管:工作原理:反向偏压下的PN结,势垒区内几乎没有自由载流子,内建电场阻止电子从N区到P区,空穴从P区到N区;当有光入射,通过吸收光产生电子-空穴对,并在内建电场作用下,电子和空穴分别漂移到N侧和P侧,产生与照射光功率成比例的电流流动;功率在势垒区外也被吸收,只有势垒区内被吸收的光才能产生光生电流。重要技术指标:响应时间-----带宽特征;转换效率----光电转换的量子效率;*PIN半导体光电二极管结构:在PN结中间引入一层本征(或轻掺杂)半导体材料——I区。工作原理:由于I层很厚,并且具有较高电阻,电压基本上落在该区,势垒区宽度增加,入射光容易进入材料内部被充分吸收而产生电子-空穴对,大幅度提高了光电转换效率。两侧P和N层很薄,吸收入射光比例小。结果:光生电流中漂移分量占支配地位,减小扩散运动影响,提高了响应度。PIN光电二极管势垒区宽度可通过控制I区厚度根据实际需要改变。势垒区宽度的影响:较高的势垒区宽度W可以获得较高响应度。(原因:W越大,越多光被吸收)随着W增大,渡越时间也会增大,使PIN响应速度(带宽)下降。W需要在响应度和响应带宽之间进行最佳化。*APD雪崩光电二极管:工作原理:APD对光电流的放大基于电离碰撞效应。当光入射到PN结时,光子被吸收产生的一次电子-空穴对在高电场区获得足够能量而加速运动;被加速的电子和空穴与晶格碰撞,使晶格原子电离,产生的二次电子-空穴对再和原子碰撞;如此多次碰撞,产生连锁反应,致使载流子雪崩式倍增。----雪崩倍增效应结果:由光吸收产生的一对电子-空穴对可以形成大量的电子-空穴对,得到较大的二次光电流,这样APD就获得了内部增益,提高了响应度。增益的大小由材料的碰撞电离系数和施加的加速电场决定。碰撞电离系数又与半导体材料及电场有关。∆APD的响应度比PIN提高了M倍。关于APD噪声的结论:倍增效应将噪声电流也放大了,放大倍数为M2。雪崩效应的随机性引起附加噪声增加的倍数为Mx。噪声功率与Mx+2成正比,信号功率与M2成正比。④APD的x值一般在0.3~1之间。x=0,Mx=1,是理想情况。*APD和PIN使用场合:PIN:广泛应用于光纤通信系统。在灵敏度要求不高的场合,一般都采用PIN。APD:在光接收机灵敏度要求较高的场合,采用APD。如:小信号测量。第四章*光调制模拟信号调制:直接用连续的模拟信号对光源进行调制。数字信号调制:主要指PCM编码调制。先将连续变化的模拟信号通过取样、量化和编码,转换成一组二进制脉冲代码。用矩形脉冲的有(“1”码)、无(“0”码)来表示信号。将电信号转变为光信号的方式通常有两种:直接调制:将模拟或数字信号放大直接调制LD或LED的驱动电流,实现对输出光功率的调制。调制后光波振幅的平方比例于调制信号(强度调制)。优点:简单、经济、容易实现。缺点:受到LD输出功率、带宽和频率啁啾的限制。应用场合:小功率(小于20mW)、较低速率(小于2.5Gbps)和较低带宽(小于2.5GHz)间接调制:通过驱动电路驱动外调制器(波导调制器或电吸收调制器)对稳定的激光光源进行调制。优点:啁啾小,调制速率高。缺点:技术复杂,成本较高。应用场合:大于10Gbps速率或40GHz以上的模拟带宽目前技术上成熟并在实际通信系统得到广泛运用的是直接光强调制。*功率与带宽的设计:设计步骤:确定系统设计要求达到的技术指标和应满足的性能指标。技术指标:比特率、中继距离性能指标:误码率(BER10-9)或信噪比根据设计指标要求,决定工作波长和光纤类型。850nm—BL积小、成本低;–B100Mb/s,L20km(局域网)1300nm~1600nm—BL积大、成本高。–B200Mb/s(长距离系统)设计收发光端机的发射光功率和灵敏度以及收发系统的带宽。第五章*模拟光纤通信系统:通过光纤信道传输模拟信号的通信系统。应用领域:当系统是受带宽限制而不是损耗限制,以及终端设备的价格为主要的考虑因素。例如:微波多路复用信号传输、用户环路应用、视频分配、天线遥感和雷达信号处理等主要缺点:对光源功率特性的线性要求、对系统信噪比的要求都比较高;由
本文标题:光纤通信原理复习资料
链接地址:https://www.777doc.com/doc-4026209 .html