您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 会议纪要 > 第四章一阶偏微分方程
第四章一阶偏微分方程这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。4.1一阶常微分方程组的首次积分4.1.1首次积分的定义从第三章我们知道,n阶常微分方程1,,'',',nnyyyxfy,(4.1.1)在变换1'12,,,,nnyyyyyy(4.1.2)之下,等价于下面的一阶微分方程组1112221212,,,,,,,,,,,,,,.nnnnndyfxyyydxdyfxyyydxdyfxyyydx(4.1.3)在第三章中,已经介绍过方程组(4.1.3)通解的概念和求法。但是除了常系数线性方程组外,求一般的(4.1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组(4.1.3)的问题。先看几个例子。例1求解微分方程组22221,1.dxdyyxxyxyxydtdt(4.1.4)解:将第一式的两端同乘x,第二式的两端同乘y,然后相加,得到12222yxyxdtdyydtdxx,222222112dxyxyxydt。这个微分方程关于变量t和22xy是可以分离,因此不难求得其解为1222221Ceyxyxt,(4.1.5)1C为积分常数。(4.1.5)叫做(4.1.4)的首次积分。注意首次积分(4.1.5)的左端,,Vxyt作为x,y,和t的函数并不等于常数;从上面的推导可见,当(),()xxtyyt时微分方程组(4.1.4)的解时,,,Vxyt才等于常数1C,这里的常数1C应随解而异。因为式(4.1.4)是一个二阶方程组,一个首次积分(4.1.5)不足以确定它的解。为了确定(4.1.4)的解,还需要找到另外一个首次积分。将第一式两端同乘y,第二式两端同乘x,然后用第一式减去第二式,得到22yxdtdyxdtdxy,即22yxdtdxydtdyx,亦即1arctandtxyd。积分得2arctanCtxy,(4.1.6)其中2C为积分常数。利用首次积分(4.1.5)和(4.1.6)可以确定(4.1.4)的通解。为此,采用极坐标cos,sinxryr,这样由(4.1.5)和(4.1.6)推得212211,.teCtCr或tCeCrt221,11.因此我们得到方程组(4.1.4)的通解为teCtCx2121cos,teCtCy2121sin.(4.1.7)例2求解微分方程组,,.duvwdtdvwudtdwuvdt(4.1.8)其中0是给定的常数。解利用方程组的对称性,可得0dudvdwuvwdtdtdt,从而得到首次积分2221uvwC,(4.1.9)其中积分常数10C。同样我们有2220dudvdwuvwdtdtdt,由此又得另一个首次积分2222222uvwC,(4.1.10)其中积分常数20C。有了首次积分(4.1.9)和(4.1.10),我们就可以将u和v用w表示,代入原方程组(4.1.8)的第三式,得到22dwaAwbBwdt,(4.1.11)其中常数a,b依赖于常数12CC和,而常数0,0.AB注意(4.1.11)是变量可分离方程,分离变量并积分得到第三个首次积分322()dwtCaAwbBw,(4.1.12)其中3C是积分常数。因为方程组(4.1.8)是三阶的,所以三个首次积分(4.1.9)、(4.1.10)和(4.1.12)在理论上足以确定它的通解123123123,,,,,,,,,,,.utCCCvtCCCwtCCC但是由于在式(4.1.12)中出现了椭圆积分,因此不能写出上述通解的具体表达式。现在我们考虑一般的n阶常微分方程niiyyyxfdxdy,,,,21,ni,2,1,(4.1.13)其中右端函数niyyyxf,,,,21在1nRD内对12,,,,nxyyy连续,而且对nyyy,,,21是连续可微的。定义1设函数12,,,,nVVxyyy在D的某个子域G内连续,而且对12,,,,nxyyy是连续可微的。又设12,,,,nVxyyy不为常数,但沿着微分方程(4.1.3)在区域G内的任意积分曲线1122:,,,nnyyxyyxyyxxJ函数V取常值;亦即12,,,nVxyxyxyxCxJ常数,或当12(,,,,)nxyyy时,有12,,,,nVxyyy=常数,这里的常数随积分曲线而定,则称12,,,,nVxyyy=C(4.1.14)为微分方程(4.1.13)在区域G内的首次积分。其中C是一个任意常数,有时也称这里的函数12,,,,nVxyyy为(4.1.13)的首次积分。例如(4.1.5)和(4.1.6)都是微分方程(4.1.4)在某个区域内的首次积分。这里对区域G有限制,是要求首次积分(4.1.5)和(4.1.6)必须是单值的连续可微函数。因此区域G内不能包括原点,而且也不能有包含原点的回路。同理,式(4.1.9)、(4.1.10)和(4.1.12)都是方程(4.1.8)的首次积分。对于高阶微分方程(4.1.1),只要做变换(4.1.2),就可以把它化成一个与其等价的微分方程组。因此,首次积分的定义可以自然地移植到n阶方程(4.1.1)。而其首次积分的一般形式可以写为1',,,,nVxyyyC。(4.1.15)例如,设二阶微分方程组222sin00dxaxadt为常数,用dxdt乘方程的两端,可得222sin0dxdxdxaxdtdtdt,然后积分,得到一个首次积分221cos2dxaxCdt。一般的,n阶常微分方程有n个独立的首次积分,如果求得n阶常微分方程组的n个独立的首次积分,则可求n阶常微分方程组的通解。4.1.2首次积分的性质和存在性关于首次积分的性质,我们不加证明地列出下面的定理。定理1设函数12,,,,nxyyy在区域G内是连续可微的,而且它不是常数,则12,,,,nxyyyC(4.1.16)是微分方程(4.1.13)在区域G内的首次积分的充分必要条件是110nnffxyy(4.1.17)是关于变量12,,,,nxyyyG的一个恒等式。这个定理实际上为我们提供了一个判别一个函数是否是微分方程(4.1.13)首次积分的有效方法。因为根据首次积分的定义,为了判别函数12,,,,nVxyyy是否是微分方程(4.1.13)在G内的首次积分,我们需要知道(4.1.13)在G内的所有积分曲线。这在实际上是由困难的。而定理1避免了这一缺点。定理2若已知微分方程(4.1.13)的一个首次积分(4.1.14),则可以把微分方程(4.1.13)降低一阶。设微分方程组(4.1.13)有n个首次积分12,,,,1,2,,inixyyyCin,(4.1.18)如果在某个区域G内它们的Jacobi行列式1212,,,0,,,nnDDyyy,(4.1.19)则称它们在区域G内是相互独立的。定理3设已知微分方程(4.1.13)的n个相互独立的首次积分(4.1.18),则可由它们得到(4.1.13)在区域G内的通解12,,,,1,2,,iinyxCCCin,(4.1.20)其中12,,,nCCC为n个任意常数(在允许范围内),而且上述通解表示了微分方程(4.1.13)在G内的所有解。关于首次积分的存在性,我们有定理4设00001,,,npxyyG,则存在0p的一个邻域0GG,使得微分方程(4.1.13)在区域0G内有n个相互独立的首次积分。定理5微分方程(4.1.13)最多只有n个相互独立的首次积分。定理6设(4.1.18)是微分方程(4.1.13)在区域G内的n个相互独立的首次积分,则在区域G内微分方程(4.1.13)的任何首次积分12,,,,nVxyyy=C,可以用(4.1.18)来表达,亦即1211212,,,,,,,,,,,,,,nnnnVxyyyhxyyyxyyy,其中*,,*h是某个连续可微的函数。为了求首次积分,也为了下一节的应用,人们常把方程组(4.1.3)改写成对称的形式12121nndydydydxfff,这时自变量和未知函数的地位是完全平等的。更一般地,人们常把上述对称式写成1211221212,,,,,,,,,,nnnnndydydyYyyyYyyyYyyy(4.1.21)并设12,,,nnYYYGR在区域内部不同时为零,例如如果设0,nY则(4.1.21)等价于1212,,,1,2,,1,,,ininnnYyyydyindyYyyy。(4.1.22)请注意,式(4.1.22)中的ny相当于自变量,1,2,,1ixin相当于未知函数,所以在方程组(4.1.21)中只有n--1个未知函数,连同自变量一起,共有n个变元。不难验证,对于系统(4.1.21),定理1相应地改写为:设函数12,,,nyyy连续可微,并且不恒等于常数,则12,,,nyyy=C是(4.1.21)的首次积分的充分必要条件是关系式1121212121,,,,,,,,,,,,0nnnnnnYyyyyyyYyyyyyyyy(4.1.23)在G内成为恒等式。如果能得到(4.1.21)的n-1个独立的首次积分,则将它们联立,就得到(4.1.21)的通积分。方程写成对称的形式后,可以利用比例的性质,给求首次积分带来方便。例3求dxdydzyxz的通积分。解将前两个式子分离变量并积分,得到方程组的一个首次积分221xyC(4.1.24)其中1C是任意常数,再用比例的性质,得dxydzxyz,两边积分,又得到一个首次积分2xyCz,(4.1.25)其中2C是任意常数。(4.1.24)和(4.1.25)是相互独立的,将它们联立,便得到原方程组得通积分221xyC,2xyCz.例4求dxdydzcybzazcxbxay的通积分。解利用比例的性质,可以得到.00dxdydzxdxydyzdzadxbdycdzcybzazcxbxay于是有0,0.xdxydyzdzadxbdycdz分别积分,就得到两个首次积分22212,.xyzCaxbyczC将它们联立,就得到原系统的通积分,其中12CC和为任意常数。例5求解二体问题,即求解方程组2322222232222223222220,0,0.dxxdtxyzdyydtxyzdzzdtxyz其中常数,GMGM是引力常数,是相对静止的这个天体的质量。现在求二体问题的运动轨线。以x乘第二式两边,以y乘第三式两边,然后相减,得22220,dydzzydtdt即0ddzdyyzdtdtdt,积分便得到1,dzdyyzCdtdt(4.1.26)这里1C是任意常数,用类似的方法,可以得到23,.dxdzzxCdtdtdydxxyCdtdt4.1.274.1.28其中23,CC都是任意常数。分别用x、y、z乘(4.1
本文标题:第四章一阶偏微分方程
链接地址:https://www.777doc.com/doc-4039078 .html