您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 分式与分式方程练习题(学生版)带答案
1分式与分式方程练习题一.选择题1.已知x+y=4,x﹣y=,则式子(x﹣y+)(x+y﹣)的值是()A.48B.12C.16D.122.化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1C.a2D.﹣13.如果23ab,那么代数式22()2ababaab的值为A.3B.23C.33D.434.已知:﹣=,则的值是()A.B.﹣C.3D.﹣35.若=3,则的值是()A.B.C.D.6.已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠27.已知x+=6,则x-=()A.6B.±6C.2D.±28.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10B.﹣12C.﹣16D.﹣189.若分式的值为0,则x的值为()A.0B.1C.﹣1D.±110.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为vkm/h,则可列方程为()A.=B.=C.=D.=11.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()2A.﹣=10B.﹣=10C.﹣=10D.+=10二.填空题1.已知ab0,且,则________。2.已知关于x的分式方程-2=有一个正数解,则k的取值范围为________.3.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.4.当m=时,解分式方程=会出现增根.5.若分式的值为0,则x的值为.6.若关于x的分式方程=2a无解,则a的值为.7.若关于x的方程+=无解,则m的值为.三.解答题1.先化简,再求值:(xy2+x2y)×÷,其中x=π0﹣()﹣1,y=2sin45°﹣.2.先化简再求值(﹣y)÷﹣(x﹣2y)(x+y),其中x=﹣1,y=2.3.先化简,再求值÷(﹣m﹣1),其中m=﹣234.解方程:(1)+=3.(2)+1=.(3)+1=5.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元.试销时A型净水器每台售价2500元,B型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70<a<80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)7.我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A.B两种型号的电动自行车共30辆,其中每辆B型4电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A.B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?参考答案一.选择题1-9DAACDDCBB.10.解:江水的流速为vkm/h,则以最大航速沿江顺流航行的速度为(30+v)km/h,以最大航速逆流航行的速度为(30﹣v)km/h,根据题意得,,故选:C.11.A.二.填空题1.2.k6且k≠33.1204.2.5.﹣3.6.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.57.解:去分母得:x+4+m(x﹣4)=m+3,可得:(m+1)x=5m﹣1,当m+1=0时,一元一次方程无解,此时m=﹣1,当m+1≠0时,则x==±4,解得:m=5或﹣,综上所述:m=﹣1或5或﹣,故答案为:﹣1或5或﹣.三.解答题1.解:原式=xy(x+y)••=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.2.解:原式=(﹣)÷﹣(x2+xy﹣2xy﹣2y2)=•(x+y)﹣x2+xy+2y2=﹣xy﹣x2+xy+2y2=﹣x2+2y2,当x=﹣1,y=2时,[^原式=﹣(﹣1)2+2×22=﹣1+8=7.3.解:原式=÷(﹣)=÷=•=﹣,当m=﹣2时,原式=﹣=﹣=﹣1+2.4(1)解:两边都乘以2x﹣1,得:2x﹣5=3(2x﹣1),解得:x=﹣,检验:当x=﹣时,2x﹣1=﹣2≠0,所以分式方程的解为x=﹣.(2)解:方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.(3)解:去分母得:4+x2﹣1=x2﹣2x+1,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解.5.解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m﹣200)元,根据题意得:=,解得:m=2000,经检验,m=2000是分式方程的解,∴m﹣200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50﹣x)≤98000,解得:x≤40.W=(2500﹣2000)x+(2180﹣1800)(50﹣x)﹣ax=(120﹣a)x+19000,∵当70<a<80时,120﹣a>0,∴W随x增大而增大,6∴当x=40时,W取最大值,最大值为(120﹣a)×40+19000=23800﹣40a,∴W的最大值是(23800﹣40a)元.6.解:(1)设乙种图书售价每本x元,则甲种图书售价为每本1.4x元由题意得:解得:x=20,经检验,x=20是原方程的解∴甲种图书售价为每本1.4×20=28元答:甲种图书售价每本28元,乙种图书售价每本20元(2)设甲种图书进货a本,总利润元,则=(28﹣20﹣3)a+(20﹣14﹣2)(1200﹣a)=a+4800∵20a+14×(1200﹣a)≤20000,解得a≤∵w随a的增大而增大,∴当a最大时w最大,∴当a=533本时,w最大,此时,乙种图书进货本数为1200﹣533=667(本)答:甲种图书进货533本,乙种图书进货667本时利润最大.7.解:(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元.由题意:=,解得x=2500,经检验:x=2500是分式方程的解.答:A.B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元.
本文标题:分式与分式方程练习题(学生版)带答案
链接地址:https://www.777doc.com/doc-4059203 .html