您好,欢迎访问三七文档
第1页(共20页)平行四边形1.(2014•祁阳县校级模拟)如图,在平行四边形ABCD中,点E、F是对角线AC上两点,且AE=CF.试说明:∠EBF=∠FDE.2.(2014•滕州市校级模拟)(1)如图1,点P是平行四边形ABCD对角线AC、BD的交点,若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4则S1、S2、S3、S4的关系为S1=S2=S3=S4.请你说明理由;(2)变式1:如图2,点P是平行四边形ABCD内一点,连接PA、PB、PC、PD.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,则S1、S2、S3、S4的关系为;(3)变式2:如图3,点P是四边形ABCD对角线AC、BD的交点若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,则S1、S2、S3、S4的关系为.请你说明理由.3.(2014•博白县模拟)如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数.第2页(共20页)4.(2014春•太仓市期中)△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC﹣AC).5.(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.6.(2013•长沙)如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.7.(2011•贵阳)[阅读]在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为.[运用](1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为.(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.第3页(共20页)8.(2011•吉林)如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.9.(2011•厦门)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?10.(2011•大田县质检)如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形;(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.第4页(共20页)第5页(共20页)平行四边形参考答案与试题解析1.(2014•祁阳县校级模拟)如图,在平行四边形ABCD中,点E、F是对角线AC上两点,且AE=CF.试说明:∠EBF=∠FDE.考点:平行四边形的性质;全等三角形的判定与性质.菁优网版权所有专题:证明题.分析:通过三角形全等得出DE=BF与BE=DF,即四边形EBFD是平行四边形,即可得出结论.解答:证明:在平行四边形ABCD中,则AD=BC,∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴DE=BF,同理BE=DF,∴四边形EBFD是平行四边形,∴∠EBF=∠FDE.点评:本题主要考查平行四边形的性质及全等三角形的判定及性质问题,应熟练掌握.2.(2014•滕州市校级模拟)(1)如图1,点P是平行四边形ABCD对角线AC、BD的交点,若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4则S1、S2、S3、S4的关系为S1=S2=S3=S4.请你说明理由;(2)变式1:如图2,点P是平行四边形ABCD内一点,连接PA、PB、PC、PD.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,则S1、S2、S3、S4的关系为S1+S3=S2+S4;(3)变式2:如图3,点P是四边形ABCD对角线AC、BD的交点若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,则S1、S2、S3、S4的关系为S1•S3=S2•S4.请你说明理由.第6页(共20页)考点:平行四边形的性质;三角形的面积.菁优网版权所有分析:(1)根据平行四边形的对角相互相平分与如果三角形等底等高面积相同,得解;(2)可以根据△ABD≌△CDB求得;(3)由△ABP中AP边上的高与△BCP中CP边上的高相同与△PAD中AP边上的高与△PCD中CP边上的高相同,可得即,即,所以,即S1•S3=S2•S4.解答:解:(1)∵四边形ABCD是平行四边形,∴AP=CP,又∵△ABP中AP边上的高与△BCP中CP边上的高相同,∴S△PAB=S△PBC,即S1=S2,同理可证S2=S3S3=S4,∴S1=S2=S3=S4;(2)S1+S3=S2+S4;(3)S1•S3=S2•S4;理由:∵△ABP中AP边上的高与△BCP中CP边上的高相同,∴即,∵△PAD中AP边上的高与△PCD中CP边上的高相同,∴即,∴,∴S1•S3=S2•S4.点评:此题考查了平行四边形的性质.解题的关键是注意:等底等高的三角形面积相等,等底的三角形的面积比等于高的比,等高的三角形面积的比等于底的比.3.(2014•博白县模拟)如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数.第7页(共20页)考点:平行四边形的判定;等腰三角形的判定.菁优网版权所有专题:动点型.分析:(1)欲证BF=FD,可证BF=EF,FD=EF.欲证BF=EF,在△BEF中,可证∠BEF=∠EBF,由于CE为直角△ABE斜边AB的中线,所以CB=CE,根据等边对等角,得出∠CEB=∠CBE,又∠CEF=∠CBF=90°,由等角的余角相等得出∠BEF=∠EBF;欲证FD=EF,在△FED中,可证∠FED=∠EDF,由于∠BEF+∠FED=90°,∠EBD+∠EDB=90°,而∠BEF=∠EBF,故∠FED=∠EDF.(2)假设点D在运动过程中能使四边形ACFE为平行四边形,则AC∥EF,AC=EF,由(1)知AC=CB=AB,EF=BF=BD,则BC=EF=BF,即BA=BD,∠A=45°.解答:解:(1)在Rt△AEB中,∵AC=BC,∴,∴CB=CE,∴∠CEB=∠CBE.∵∠CEF=∠CBF=90°,∴∠BEF=∠EBF,∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,∴∠FED=∠EDF,∵EF=FD.∴BF=FD.(2)能.理由如下:若四边形ACFE为平行四边形,则AC∥EF,AC=EF,∴BC=BF,∴BA=BD,∠A=45°.∴当∠A=45°时四边形ACFE为平行四边形.点评:本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.第8页(共20页)4.(2014春•太仓市期中)△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC﹣AC).考点:三角形中位线定理.菁优网版权所有专题:证明题.分析:延长AD交BC于F,证明AC=CF,DE是△ABF的中位线,即可求证.解答:解:延长AD交BC于F,说明AC=CF,DE是△ABF的中位线.∵CD平分∠ACB,AD⊥CD,∴∠ACD=∠BCD,CD是公共边,∠ADC=∠FDC=90°,∴△ADC≌△FDC(ASA)∴AC=CF,AD=FD又∵△ABC中E是AB的中点,∴DE是△ABF的中位线,∴DE=BF=(BC﹣CF)=(BC﹣AC).点评:此题主要考查三角形的中位线定理,综合利用了三角形全等的知识,证出DE是△ABF的中位线是关键.5.(2013•常德)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.第9页(共20页)考点:三角形中位线定理;全等三角形的判定与性质;等腰直角三角形.菁优网版权所有专题:压轴题.分析:(1)证法一:如答图1a所示,延长AB交CF于点D,证明BM为△ADF的中位线即可;证法二:如答图1b所示,延长BM交EF于D,根据在同一平面内,垂直于同一直线的两直线互相平行可得AB∥EF,再根据两直线平行,内错角相等可得∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,然后求出BE=DE,从而得到△BDE是等腰直角三角形,根据等腰直角三角形的性质求出∠EBM=45°,从而得到∠EBM=∠ECF,再根据同位角相等,两直线平行证明MB∥CF即可,(2)解法一:如答图2a所示,作辅助线,推出BM、ME是两条中位线;解法二:先求出BE的长,再根据全等三角形对应边相等可得BM=DM,根据等腰三角形三线合一的性质可得EM⊥BD,求出△BEM是等腰直角三角形,根据等腰直角三角形的性质求解即可;(3)证法一:如答图3a所示,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME;证法二:如答图3b所示,延长BM交CF于D,连接BE、DE,利用同旁内角互补,两直线平行求出AB∥CF,再根据两直线平行,内错角相等求出∠BAM=∠DFM,根据中点定义可得AM=MF,然后利用“角边角”证明△ABM和△FDM全等,再根据全等三角形对应边相等可得AB=DF,BM=DM,再根据“边角边”证明△BCE和△DFE全等,根据全等三角形对应边相等可得BE=DE,全等三角形对应角相等可得∠BEC=∠DEF,然后求出∠BED=∠CEF=90°,再根据等腰直角三角形的性质证明即可.解答:(1)证法一:如答图1a,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.证法二:如答图1b,延长BM交EF于D,∵∠ABC=∠CEF=90°,∴AB⊥CE,EF⊥CE,∴AB∥EF,∴∠BAM=∠DFM,∵M是AF的中点,∴AM=MF,在△ABM和△FDM中,第10页(共20页),∴△ABM≌△FDM(ASA),∴AB=DF,∵BE=C
本文标题:平行四边形难题
链接地址:https://www.777doc.com/doc-4064190 .html