您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > spss案例数据分析
Spss期末作业关于我国城镇居民消费结构及趋势的数据分析本次分析采用的数据来源于《中国统计年鉴—2011》,我选用的是其中的第十篇章—人民生活下的城镇居民家庭基本情况的相关数据,用以研究城镇居民消费结构及其趋势。(附数据部分截图)(A)下面是我对该数据做的相关分析。表一给出的是基本的描述性统计图,表中显示各个变量的全部观测量的均值、标准差和观测值总数N,表2给出的是相关系数矩阵表,其中显示4个变量两两之间的pearson相关系数,以及关于相关关系等于零的假设的单侧显著性检验概率。描述性统计量均值标准差N食品2744.06601802.805845衣着775.8200555.676165居住694.1920565.482225家庭设备用品及服务488.2500343.940065表1描述性统计表相关性食品衣着居住家庭设备用品及服务食品Pearson相关性1.998**.991**.995**显著性(单侧).000.001.000平方与叉积的和1.300E74000739.1974039135.8552468266.142协方差3250108.8921000184.7991009783.964617066.535N5555衣着Pearson相关性.998**1.985**.994**显著性(单侧).000.001.000平方与叉积的和4000739.1971235103.9751238672.922760246.419协方差1000184.799308775.994309668.230190061.605N5555居住Pearson相关性.991**.985**1.996**显著性(单侧).001.001.000平方与叉积的和4039135.8551238672.9221279080.565775005.410协方差1009783.964309668.230319770.141193751.352N5555家庭设备用品及服务Pearson相关性.995**.994**.996**1显著性(单侧).000.000.000平方与叉积的和2468266.142760246.419775005.410473179.063协方差617066.535190061.605193751.352118294.766N5555**.在.01水平(单侧)上显著相关。表2相关系数矩阵从表2中可以看出家庭设备用品及服务与食品、衣着之间相关系数分别为0.995、0.994,反映家庭设备用品及服务与食品、衣着之间存在显著的相关关系。说明食品与衣着对家庭设备用品及服务条件的好转有显著的作用,此外食品与衣着之间,食品与居住之间,居住与衣着之间的相关系数分别为0.998、0.991、0.985,这说明他们之间也存在着显著的相关关系。在这里还要提一下相关系数旁边的两个星号的意思,它表示显著性水平α为0.01时仍拒绝原假设,一个星号则表示显著性水平α为0.05时可拒绝原假设。因此,两个星号比一个星号拒绝原假设犯错误的可能性更小。(B)下面是做的回归分析表3给出了进入模型和被剔除的变量的信息。从表中我们可以看出所有3个自变量都进入模型,说明我们的解释变量都是显著并且是有解释力的。表4给出了模型整体拟合效果的概述,模型的拟合优度系数为1.000,反映了因变量于自变量之间具有高度显著的线性关系。表里还显示了R平方以及经调整的R值估计标准误差表5给出了方差分析表我们可以看到模型的设定检验F统计量的值为411.727,显著性水平的P值为0.036。表6给出了回归系数表和变量显著性检验的T值。我们发现变量“食品”的T值太小,没有达到显著性水平,因此我们要将这个变量剔除。从这里我们也可以看出模型虽然通过了设定检验,但很有可能不能通过变量的显著性检验。输入/移去的变量模型输入的变量移去的变量方法1居住,衣着,食品a.输入a.已输入所有请求的变量。表3变量进入/剔除信息表模型汇总模型RR方调整R方标准估计的误差11.000a.999.99719.56464a.预测变量:(常量),居住,衣着,食品。表4模型概述表Anovab模型平方和df均方FSig.1回归472796.2883157598.763411.727.036a残差382.7751382.775总计473179.0634a.预测变量:(常量),居住,衣着,食品。b.因变量:家庭设备用品及服务表5方差分析表系数a模型非标准化系数标准系数tSig.B标准误差试用版1(常量)86.02242.9022.005.295食品-.160.133-.838-1.204.441衣着.674.3491.0901.934.304居住.458.141.7523.256.190a.因变量:家庭设备用品及服务表6回归系数表残差统计量a极小值极大值均值标准偏差N预测值118.2242901.6300488.2500343.800925残差-11.588167.57571.000009.782325标准预测值-1.0761.202.0001.0005标准残差-.592.387.000.5005a.因变量:家庭设备用品及服务表7残差统计表表7给出了残差分析表,表中显示了预测值、残差、标准化预测值、标准化残差的最小值、最大值、均值、标准偏差及样本容量等数据。根据概率的3西格玛原则,标准化残差的绝对值最大为0.387,小于3,说明样本数据中没有奇异值。表8残差分布直方图表8给出了模型的直方图。由于我们在模型中始终假设残差服从正态分布,因此我们可以从这张图中直观地看出回归后的实际残差是否符合我们的假设。从回归残差的直方图与附于图上的正态分布曲线相比较,可以认为残差的分布不是明显地服从正态分布。尽管这样也不能盲目的否定残差服从正态分布的假设,因为我们用了进行分析的样本太小,样本容量仅为5。(C)spss参数检验分析(单样本t检验)1.单样本t检验。在这里我选择的是转移性收入这个变量做的分析,推断转移性收入的平均值是否为2200元,下面是分析后输出的结果。单个样本统计量N均值标准差均值的标准误转移性收入52420.46002221.14998993.32847表9转移性收入的基本描述统计结果单个样本检验检验值=2200tdfSig.(双侧)均值差值差分的95%置信区间下限上限转移性收入.2224.835220.46000-2537.46202978.3820表10转移性收入单样本t检验结果由表9可知,五个年份的转移性收入的平均值为2420.4600元,标准差为2221.14元,均值的标准误差为993.32。从表10中可以看出,该问题应采用双尾检验,因此比较α/2和p/2,也就是比较α和Ρ。如果α给0.05,由于Ρ大于α,因此不应拒绝原假设,不能认为转移性收入的平均值与2200有显著差异。(D)比率分析表11案例处理摘要表12工资性收入的比率分析结果表11是案例处理摘要,表12显示的是工资性收入的比率分析结果,从表12可以看出五个年份的工资性收入占平均每人全部年收入的比率的均值为0.714,也就是说,五个年份的城镇居民平均每人全部年收入中的71.4%为工资性收入,由案例处理摘要计数总数5排除的0总计5工资性收入/平均每人全部年收入的比率统计量均值.714平均数绝对值偏差.048离散系数.068方差系数均值居中8.7%中值居中8.7%此可见工资性收入对城镇居民生活状况改善的重要性。(E)因子分析在这里先将分析后得到的结果展示如下:相关矩阵a食品衣着居住家庭设备用品及服务医疗保健相关食品1.000.998.991.995.986衣着.9981.000.985.994.981居住.991.9851.000.996.996家庭设备用品及服务.995.994.9961.000.990医疗保健.986.981.996.9901.000a.此矩阵不是正定矩阵。表13相关系数矩阵公因子方差初始提取食品1.000.995衣着1.000.991居住1.000.994家庭设备用品及服务1.000.997医疗保健1.000.988提取方法:主成份分析。表14公因子方差解释的总方差成份初始特征值提取平方和载入合计方差的%累积%合计方差的%累积%14.96599.30099.3004.96599.30099.3002.027.53899.8383.006.11899.9564.002.044100.00053.718E-177.436E-16100.000提取方法:主成份分析。表15解释的总方差表16因子的碎石图表18成分得分系数矩阵成份矩阵a成份1家庭设备用品及服务.999食品.997居住.997衣着.995医疗保健.994提取方法:主成分分析法。a.已提取了1个成份。表17成分矩阵表13是原有变量的相关系数矩阵。可以看出:大部分的相关系数都较高,各变量呈较强的线性关系,能够从中提取公共因子,适合进行因子分析。表14是因子分析的初始解,显示了所有变量的共同度数据。第一列是因子分析初始解下的变量共同度,它表明:对原有5个变量如果采用主成分分析方法提取所有特征根(5个),那么原有变量的所有方差都可被解释,变量的共同度均为1(原有变量标准化后的方差为1)。事实上,因子个数小于原有变量的个数才是因子分析的目标,所以不可能提取全部特征根;第二列是在按指定提取条件(这里为特征根大于1)提取特征根时的共同度。表15中:第一列是因子编号,以后三列组成一组,每组中数据项的含义依次是特征根值、方差贡献率。表16是因子的碎石图,横坐标为因子数目,纵坐标为特征根。可以看到:第一个因子的特征根值很高,对解释原有变量的贡献最大;第二个以后的因子特征根值都较小,对解释原有变量的贡献很小,已经成为可被忽略的“高山脚下的碎石”,因此提取一个因子是合适的。表17显示的是因子成分矩阵,是因子分析的核心内容。由表可以看出5个变量在第一个因子上的载荷都很高,意味着它们与第一个因子的相关程度高,第一个因子很重要。另外还可以看出:因子的实际含义比较模糊。表18是成分得分系数矩阵。我的分析到此结束,以下为原始数据处理时的截图成份得分系数矩阵成份1食品.201衣着.200居住.201家庭设备用品及服务.201医疗保健.200提取方法:主成分分析法。旋转法:具有Kaiser标准化的正交旋转法。构成得分。
本文标题:spss案例数据分析
链接地址:https://www.777doc.com/doc-4067910 .html